Forgot password?
 Register account
View 4029|Reply 13

[不等式] 好久没来、发2题

[Copy link]

8

Threads

8

Posts

83

Credits

Credits
83

Show all posts

成龙之龙 Posted 2015-12-9 20:18 |Read mode
未命名1.GIF

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-20 17:00
哪里的征解题?可以给个出处吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-20 17:59
问题1:
待定系数 $t$,由柯西有
\[
\sum \frac1{4+b^2-c}=\sum \frac{(a+tc)^2}{(a+tc)^2(4+b^2-c)}
\geqslant \frac{\left( \sum (a+tc) \right)^2}{\sum (a+tc)^2(4+b^2-c)}
=\frac{(1+t)^2(a+b+c)^2}{\sum (a+tc)^2(4+b^2-c)},
\]
故只需证
\[4(1+t)^2(a+b+c)^2\geqslant 3\sum (a+tc)^2(4+b^2-c),\]
齐次化即
\[4(1+t)^2(a+b+c)^4\geqslant 3\sum (a+tc)^2\bigl(4(a+b+c)^2+9b^2-3c(a+b+c)\bigr),\]
展开为
\[F=P\sum a^4+Q\sum a^3b+R\sum ab^3+S\sum a^2b^2+T\sum a^2bc\geqslant 0,\]
其中
\begin{align*}
P & =t^2+8t-8, \\
Q & =t^2+26t-8, \\
R & =t^2+8t+1, \\
S & =-27t^2+18t-18, \\
T & =24t^2-60t+33.
\end{align*}

引理:设 $a$, $b$, $c\geqslant 0$,则有
\[\sum a^4-\sum a^2b^2\geqslant 2\left| \sum a^3b-\sum ab^3 \right|.\]

引理的证明楼下再写,先直接拿来用。

由引理我们有
\begin{align*}
Q\sum a^3b+R\sum ab^3&=\frac{Q+R}2\left( \sum a^3b+\sum ab^3 \right)+\frac{Q-R}2\left( \sum a^3b-\sum ab^3 \right) \\
&\geqslant \frac{Q+R}2\left( \sum a^3b+\sum ab^3 \right)-\left| \frac{Q-R}2\left( \sum a^3b-\sum ab^3 \right) \right| \\
&\geqslant \frac{Q+R}2\left( \sum a^3b+\sum ab^3 \right)-\frac{\abs{Q-R}}4\left( \sum a^4-\sum a^2b^2 \right),
\end{align*}

\[F\geqslant \left( P-\frac{\abs{Q-R}}4 \right)\sum a^4+(Q+R)\frac{\sum a^3b+\sum ab^3}2+\left( S+\frac{\abs{Q-R}}4 \right)\sum a^2b^2+T\sum a^2bc,\]
现在,我们取 $t=3/2$,代入上式中,即得
\[F\geqslant \frac74\sum a^4+\frac{97}2\cdot\frac{\sum a^3b+\sum ab^3}2-\frac{189}4\sum a^2b^2-3\sum a^2bc\geqslant 0,\]
所以原不等式得证。

有点儿的暴力。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-20 18:06
引理的证明:
左边配方右边因式分解,等价于
\[\sum (a^2-b^2)^2\geqslant 4(a+b+c)\abs{(a-b)(b-c)(c-a)},\]
不妨设 $c=\min \{a,b,c\}$,令 $a=c+t$, $b=c+u$, $t$, $u\geqslant 0$,则等价于
\[f(c)=(t-u)^2(2c+t+u)^2+t^2(2c+t)^2+u^2(2c+u)^2-4tu\abs{t-u}(3c+t+u) \geqslant 0,\]
求导得
\begin{align*}
f'(c)&=4(t-u)^2(2c+t+u)+4t^2(2c+t)+4u^2(2c+u)-12tu\abs{t-u} \\
& \geqslant 4(t-u)^2(t+u)+4t^3+4u^3-12tu\abs{t-u} \\
& \geqslant 12\sqrt[3]{(t-u)^2(t+u)t^3u^3}-12tu\abs{t-u} \\
& \geqslant 12\sqrt[3]{(t-u)^2\abs{t-u}t^3u^3}-12tu\abs{t-u} \\
& =0,
\end{align*}
所以
\begin{align*}
f(c)&\geqslant f(0) \\
& =(t^2-u^2)^2+t^4+u^4-4tu\abs{t^2-u^2} \\
& =2(t^2-u^2)^2+2t^2u^2-4tu\abs{t^2-u^2} \\
& \geqslant 4\sqrt{(t^2-u^2)^2t^2u^2}-4tu\abs{t^2-u^2} \\
& =0,
\end{align*}
得证。

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-12-21 22:51
好熟练:)
引理应该配方也可以证。
三元四次齐次不等式有没有些统一的结果?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-21 23:01
回复 5# 郝酒

我也不是很清楚。
引理那里我习惯了对(a-b)(b-c)(c-a)用增量代换,你写下怎么配方?

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-12-22 16:00
只是对正数a,b,c成立。我想错了,配方可能不行。
最近在研究四次轮换不等式的一般结论。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-22 16:07
回复 7# 郝酒

实数范围的话是有结论的,但正数我就不清楚了

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-12-23 10:28
是这个结论吧:
2015-12-23_102603.jpg
2015-12-23_102619.jpg
2015-12-23_102628.jpg
实数范围的话,是否一定可以由配方完成呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-23 15:59
回复 9# 郝酒

我记得我见过 Can 的配方,不过一时找不到那文件

2

Threads

6

Posts

50

Credits

Credits
50
QQ

Show all posts

Crazy_LittleBoy Posted 2015-12-23 16:39
回复  郝酒

我记得我见过 Can 的配方,不过一时找不到那文件
kuing 发表于 2015-12-23 15:59
$type 四次配方.pdf (65 KB, Downloads: 1388)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-23 16:42
回复 11# Crazy_LittleBoy

就是这个,thanks

0

Threads

4

Posts

56

Credits

Credits
56

Show all posts

名落孙山 Posted 2017-10-31 21:15
回复 3# kuing


    请问最后一步的大于等于\(\,0\,\)是为什么?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-10-31 23:08
回复 13# 名落孙山

因为较前的和式$\ge$较后的和式

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit