Forgot password
 Register account
View 2975|Reply 8

[函数] 又一分式型三角函数的最大值

[Copy link]
青青子衿 posted 2013-10-6 19:30 |Read mode
Last edited by hbghlyj 2025-3-21 04:14求函数$f(x)=\dfrac{\sin x}{\sqrt{5+4\cos x}}$的最大值。

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-6 19:53
回复 1# 青青子衿


    介不是重庆那个很知名的高考题吗。
这是文科的那个,理科的还要复杂一些

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-6 20:03
Last edited by hbghlyj 2025-3-21 04:16回复 2# Tesla35
site:bbs.pep.com.cn 重庆2008高考
理科的那道:bbs.pep.com.cn/thread-423669-1-1.html

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-6 20:06
Last edited by hbghlyj 2025-3-21 04:15回复 3# 其妙
bbs.pep.com.cn/thread-384067-1-1.html

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-6 20:13
FAQ嗯
PS、sinx 代码应为 \sin x 注意空格,cos同理
original poster 青青子衿 posted 2013-10-6 20:42
FAQ嗯
PS、sinx 代码应为 \sin x 注意空格,cos同理
kuing 发表于 2013-10-6 20:13

$\dfrac{2+\sqrt{2}cosx}{\sqrt{10+4\sqrt{2}(sinx+cosx)}}=\dfrac{2+\sqrt{2}cosx}{\sqrt{(2+\sqrt{2}cosx)^2+(2+\sqrt{2}sinx)^2}}$
$\dfrac{sinx}{\sqrt{5+4cosx}}=\dfrac{sinx}{2\sqrt{(cosx+\dfrac{1}{2})^2+sin^2x}}$
$\dfrac{sinx-1}{\sqrt{3-2cosx-2sinx}}=\dfrac{sinx-1}{\sqrt{(cosx-1)^2+(sinx-1)^2}}$
构造向量法?
FAQ是英文Frequently Asked Questions的缩写,中文意思就是“经常问到的问题”,或者更通俗地叫做“常见问题解答”。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-6 20:52
回复 6# 青青子衿
在这里是:经常问到的问题
楼主还是没搞斜杠\
例如$\sin x$、$\cos x$和$sin x$,$cos x$的显示效果
妙不可言,不明其妙,不着一字,各释其妙!
original poster 青青子衿 posted 2014-2-4 19:34
回复  Tesla35
site:bbs.pep.com.cn 重庆2008高考理科的那道:
其妙 发表于 2013-10-6 20:03
也是2008年安徽数学联赛的第8题!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-4 20:14
Last edited by hbghlyj 2025-3-21 04:15
也是2008年安徽数学联赛的第8题!
青青子衿 发表于 2014-2-4 19:34
8.函数 $f(x)=\frac{3+5 \sin x}{\sqrt{5+4 \cos x+3 \sin x}}$ 的值域为 $\left(-\frac{4}{5} \sqrt{10}, \sqrt{10}\right]$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:46 GMT+8

Powered by Discuz!

Processed in 0.013184 seconds, 26 queries