Forgot password?
 Register account
View 1685|Reply 2

[函数] 高数不等式

[Copy link]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2015-12-25 17:30 |Read mode
证明:
$$\frac{1}{2x-1}\leq log_5(\frac{4x+1}{4x-3})$$
对于一切实数$x \in [1,+\infty)$成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-26 23:55
跟高数关系不大吧。


\[y=\frac{1}{2x-1}\riff y\in (0,1],x=\frac{1+y}{2y},\]
代入原不等式化为
\[y\le \log _{5}\frac{2+3y}{2-y},\]
即证
\[f(y)=\ln (2+3y)-\ln (2-y)-y\ln 5\ge 0,\]
求导有
\[f'(y)=\frac{3}{2+3y}+\frac{1}{2-y}-\ln 5=\frac{(y-2)(2+3y)\ln 5+8}{(2+3y)(2-y)},\]
令 $g(y)=(y-2)(2+3y)\ln 5+8$,按计算器知 $g(0)=-4\ln 5+8>0$, $g(1)=-5\ln 5+8<0$,由于 $g(y)$ 是开口向上的二次函数,故存在唯一的 $y_{0}\in (0,1)$ 使 $ g(y_{0})=0$,故当 $y\in (0,y_{0})$ 时 $f'(y)>0$,当 $y\in (y_{0},1)$ 时 $ f'(y)<0$,所以
\[f(y)\ge \min \{f(0),f(1)\}=0,\]
即得证。

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

 Author| 血狼王 Posted 2015-12-26 23:59
回复 2# kuing


这种东西在我的学校里就叫高数
kk你懂的

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit