Forgot password?
 Register account
View 3057|Reply 11

[不等式] 请教证明一不等式

[Copy link]

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2013-10-6 23:11 |Read mode
Last edited by 史嘉 2013-10-7 20:44$\frac n2-\frac13<\sum_{k=1}^n\frac{2^k-1}{2^{k+1}-1}<\frac n2$
右边已证得。
请教左边怎么证明。谢谢!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-6 23:15
$\frac{n}{2}-\frac13<\frac{2^n-1}{2^{n+1}-1}<\frac{n}{2}$
右边已证得。
请教左边怎么证明。谢谢!
史嘉 发表于 2013-10-6 23:11
左边怎么会成立,n 很大时中间接近 1/2 呢

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-6 23:19
太快了,大K。
题目是这样的,我用糖水模型放缩证得右边;
左边我放的有点过,到$\frac{n}2-\frac12$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-6 23:26
原题放出来瞧瞧

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-7 12:03
回复 4# kuing


    哦,我错了,中间需要$\sum_{k=1}^n$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-7 12:08
回复  kuing
哦,我错了,中间需要$\sum_{k=1}^n$
史嘉 发表于 2013-10-7 12:03
\[\frac n2-\frac13<\sum_{k=1}^n\frac{2^k-1}{2^{k+1}-1}<\frac n2?\]
这样?

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-7 20:26
回复 6# kuing


    是的是的,我的疏忽,烦劳了诸位。
请大K等诸位高手,帮忙,出手相助。非常感谢!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-7 20:48
原来旧版论坛有记录过:kkkkuingggg.haotui.com/viewthread.php?tid=882

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-7 22:25
K歌好记性,我很期待shidilin说的放缩法。
归纳法是最后一招,总比证明不了强吧。
谢谢!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-7 22:30
哦,查到了,2006年福建题。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-7 23:04
回复 10# 史嘉
有时还是把原汁原味的东西拿出来才是最好!
如果要考虑自己转化过的东西,
1、需要自己保证100%准确;
2、保证自己转化了的东西的方法100%可行的,只是自己暂时未找到方法(这似乎又矛盾了);
3、解决2的矛盾,可以说一下原题和自己的思路为何要这样转化,别人才可能分析你的转化方法对不对?如果对,下一步怎么做
4、……
妙不可言,不明其妙,不着一字,各释其妙!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-10 23:11
回复 11# 其妙

谢谢其妙老师的提醒!!

Mobile version|Discuz Math Forum

2025-6-6 03:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit