Forgot password
 Register account
View 1745|Reply 4

[不等式] 关于一型不等式的变式讨论

[Copy link]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2015-12-26 16:10 |Read mode
若$a,b,c$为非负实数,$a+b+c=1$,求证:
$$\sqrt{a^3+9b}+\sqrt{b^3+9c}+\sqrt{c^3+9a}\geq 4.$$

这是原型,大家若有兴趣,变形的、加强的都可以发。
有证明的,也可以发过来。
Crazy_LittleBoy posted 2015-12-26 23:18
$0\leq a,b,c$ and $a+b+c=1$ prove that:

$
1+2\,\sqrt {2}\leq \sqrt {{a}^{3}+8\,c}+\sqrt {{b}^{3}+8\,a}+\sqrt {{c
}^{3}+8\,b}
$


参见:Old inequality artofproblemsolving.com/community/u248534h1170205p5615672

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2015-12-26 23:39
若$a,b,c$为非负实数且$a+b+c=1$,求证:
当$0\leq k\leq \frac{8}{9}$时,
$$\sqrt{a^3+kb}+\sqrt{b^3+kc}+\sqrt{c^3+ka}\geq \frac{\sqrt{9k+1}}{3};$$
当$k\geq \frac{7+\sqrt{13}}{2}$时,
$$\sqrt{a^3+kb}+\sqrt{b^3+kc}+\sqrt{c^3+ka}\geq \sqrt{k}+1.$$

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2015-12-26 23:47
回复 2# Crazy_LittleBoy


3楼的很难证明,你试试看
Crazy_LittleBoy posted 2015-12-27 11:28
回复 4# 血狼王


    我证明了一下$k=8/9$和$k=7/2+1/2\,\sqrt {13}$的情况,其它情况应该容易处理。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:56 GMT+8

Powered by Discuz!

Processed in 0.013310 seconds, 22 queries