Forgot password?
 Register account
View 2082|Reply 5

[几何] 来自某教师群的$y=x^2$与$y=-x^2$无滑动滚动

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-1-11 23:20 |Read mode
中山温老师(2865*****)  22:59:25
QQ图片20160111231758.jpg
感觉有点特别 发出来大家看看

广州kuing(249533164)  23:07:40
准线
广州kuing(249533164)  23:09:52
由光学性质,焦点关于切线的对称点在准线上
所以轨迹就是准线
广州kuing(249533164)  23:11:19
QQ图片20160111231902.png
广州kuing(249533164)  23:14:28
QQ图片20160111231916.gif
注:一、两抛物线是全等的,二、初始时对称,这两点保证了滚动时总是对称的,两点缺一不可。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2016-1-11 23:22
擦,发完才发现原来是上面动下面不动,上面画反了。
想想也是,通常都是下面不动的哇……
两条抛物线 $y=x^2$ 与 $y=-x^2$ 彼此相切,上面的抛物线无滑动地围绕下面固定的抛物线滚动,求动的抛物线的焦点的轨迹。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-1-13 11:46
擦,发完才发现原来是上面动下面不动,上面画反了。
想想也是,通常都是下面不动的哇……
...
kuing 发表于 2016-1-11 23:22

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-1-15 14:25
两抛物线关于他们的公切线对称,两焦点也关于公切线对称,即:
公切线是两焦点连线的垂直平分线。
几何画板画抛物线是由准线上的点带出抛物线上的点,产生轨迹。
现在刚好反过来。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2016-1-17 15:56
回复 3# isee

想多了吧

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-15 17:22

两抛物线 顶点轨迹

Two equal parabolas with foci at S and S' touch each other at point P, such that PS'=PS. If the parabola with focus S is fixed, find the locus of S'
The parabola $x^2=12y$ rolls without slipping around the parabola $x^2=-12y$
The parabola $x^2=12y$ rolls without slipping around the parabola $x^2=-12y$ then find the locus of focus of rolling parabola and also find the locus of vertex of rolling parabola
Locus of vertex of moving parabola

抛物线直线 焦点轨迹
Why does the focus of a rolling parabola trace a catenary?

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit