Forgot password
 Register account
View 2074|Reply 0

[不等式] 来自某教师群的简单不等式

[Copy link]

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2016-1-12 20:57 |Read mode
惠州春哥(2515*****) 17:37:51
QQ图片20160112205523.png
广州kuing(249533164) 18:26:11
QQ图片20160112205607.png

代码存档
  1. \begin{proof}
  2. 由 $xyz=1$ 可令 $x=a/b$, $y=b/c$, $z=c/a$, $a$, $b$, $c>0$,
  3. 代入条件的三个不等式中分别化为 $a+c>b$, $b+a>c$, $c+b>a$,
  4. 可见 $a$, $b$, $c$ 构成三角形三边,而待证的不等式化为
  5. \[
  6. 2\left(\frac ab+\frac bc+\frac ca\right)\geqslant \frac ba+\frac cb+\frac ac+3,
  7. \]
  8. 事实上
  9. \[
  10. \LHS-\RHS=\frac{(a-b)^2(c+a-b)+(b-c)^2(a+b-c)+(c-a)^2(b+c-a)}{2abc},
  11. \]
  12. 故原不等式成立。
  13. \end{proof}
Copy the Code

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 14:04 GMT+8

Powered by Discuz!

Processed in 0.037115 second(s), 24 queries

× Quick Reply To Top Edit