Forgot password?
 Register account
View 2073|Reply 7

[不等式] 2016泰州高三数学期末考试的一道最值试题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2016-1-27 10:35 |Read mode
Last edited by hbghlyj 2025-4-7 01:32若正实数 $x, y$ 满足 $(2 x y-1)^2=(5 y+2)(y-2)$,则 $x+\frac{1}{2 y}$ 的最大值为

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-1-27 12:17
Last edited by hbghlyj 2025-4-7 01:32\begin{aligned}
& x+\frac{1}{2 y}=\frac{2 x y+1}{2 y}=m \\
& (2 m y-2)^2=(5 y+2)(y-2)
\end{aligned}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-1-27 14:26
\begin{align*}
x+\frac1{2y}&=\frac{2xy+1}{2y} \\
& \leqslant \frac{2+\sqrt{(5y+2)(y-2)}}{2y} \\
& =\frac1{2y}\left( 2+\frac{\sqrt2-1}2\cdot 2\sqrt{(5y+2)\bigl(3+2\sqrt2\bigr)(y-2)} \right) \\
& \leqslant \frac1{2y}\left( 2+\frac{\sqrt2-1}2\cdot \Bigl(5y+2+\bigl(3+2\sqrt2\bigr)(y-2)\Bigr) \right) \\
& =\frac{3\sqrt2-2}2.
\end{align*}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-1-27 15:56
待定系数,m满足(1-m)/根号m+2=0,解得根号m=1+根号2.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-1-28 10:45
回复 2# 游客
此法接下来如何进行?感觉此题只有待定系数用均值不等式吗?

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-1-28 12:02
回复 5# 敬畏数学


    用二次方程的判别式。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-1-28 12:32
此法很简单,提倡此法。最后验证等号取得即可。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-1-28 12:43
\begin{align*}
x+\frac1{2y}&=\frac{2xy+1}{2y} \\
& \leqslant \frac{2+\sqrt{(5y+2)(y-2)}}{2y} \\
&  ...
kuing 发表于 2016-1-27 14:26
还果真是这个结果。。。。。

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit