Forgot password
 Register account
View 2235|Reply 3

[不等式] 一个数列和不等式

[Copy link]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2016-2-24 09:57 |Read mode
求证:对一切正整数$n$均有
$$\sum_{k=2}^{n} \frac{\ln^2 k}{k^2}<2-\frac{\ln^2 n}{n}.$$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2016-2-24 12:53
回复 1# 血狼王

易证当$k\ge 3$时有$\frac{\ln^2(k)}{k^2}$递减
于是
\[\sum_{k=2}^n\frac{\ln^2(k)}{k^2}<\frac{\ln^2(2)}{4}+\int_3^n\frac{\ln^2(x)}{x^2}dx=\frac{\ln^2(2)}{4}+\frac{2+\ln^2(3)+\ln(9)}{3}-\frac{2+2\ln(n)+\ln^2(n)}{n}\]
这个明显严格多了

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2016-2-24 21:33
回复 2# 战巡

按你这么说,似乎因为$\frac{\ln^2(k)}{k^2}$当$k\geq 3$时递减,就有了
$$\frac{\ln^2(k)}{k^2}<\int_k^{k+1}\frac{\ln^2(x)}{x^2}dx$$
这明显是……

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2016-2-24 22:32
递减的话是 $f(k)<\int_{k-1}^k f(x)\rmd x$,所以2楼那里应该是从 k=4 开始放缩的,由此还发现2楼右边漏了 k=3 这一项。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:15 GMT+8

Powered by Discuz!

Processed in 0.042187 seconds, 22 queries