Forgot password
 Register account
View 2044|Reply 7

[几何] 来自人教群的两圆证垂直

[Copy link]

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2016-3-4 14:50 |Read mode
【渣^5】川A爱好者zhcosin(5323*****)  12:23:23
QQ图片20160304144927.jpg
先证明
\[CP=\frac{CA+CD}{2\cos\angle PCD}.\]
QQ截图20160304145011.png
如图,作 $PE\perp CA$, $PF\perp CD$,易证 $\triangle PAE\cong\triangle PDF$,则 $CA+CD=CE+CF=2CF$,所以
\[CP=\frac{CF}{\cos\angle PCD}=\frac{CA+CD}{2\cos\angle PCD}.\]

同理有
\[CQ=\frac{CB+CD}{2\cos\angle QCD},\]
因为 $\angle PCA=\angle PCD$, $\angle QCB=\angle QCD$,所以 $\angle PCQ=90\du$,于是
\[\frac{CP}{CQ}=\frac{\cos\angle QCD}{\cos\angle PCD}=\frac{\sin\angle PCD}{\cos\angle PCD}=\tan\angle PCD,\]
由此即得 $CD\perp PQ$。
这名字我喜欢

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2016-3-4 20:57
QQ图片20150923200641.jpg
电脑里有好几种解法,没时间撸

13

Threads

898

Posts

8

Reputation

Show all posts

original poster 色k posted 2016-3-4 22:25
回复 2# Tesla35

看8懂[冷汗]😓
这名字我喜欢

13

Threads

898

Posts

8

Reputation

Show all posts

original poster 色k posted 2016-3-4 22:35
回复 2# Tesla35

看8懂

刚才加了个符号表情,竟然乱码了
这名字我喜欢

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-3-5 10:06
粗看好像人教高中区讨论过

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-3-5 12:21

13

Threads

898

Posts

8

Reputation

Show all posts

original poster 色k posted 2016-3-5 12:40
回复 6# isee

这种题竟然会出现在高中区
这名字我喜欢

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2016-3-6 13:34
回复 4# 色k

遇等腰则旋转

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:28 GMT+8

Powered by Discuz!

Processed in 0.014316 seconds, 25 queries