Forgot password?
 Register account
View 1958|Reply 1

[不等式] 来自某教师群昨天的一道看似是函数题的不等式

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-3-8 18:25 |Read mode
佛山杜国强(2905*****) 10:29:14
QQ图片20160308181352.jpg
分享个题
(II)为方便打代码,将 $\alpha$, $\beta$ 用 $a$, $b$ 代替,由题设,有 $(1+x)^{a-2}\leqslant (1-x)^{a-2}$ 且 $(1+x)^{b-a}\geqslant (1-x)^{b-a}$,于是由切比雪夫不等式,有
\begin{align*}
(1+x)^{b-2}+(1-x)^{b-2}&=(1+x)^{a-2}(1+x)^{b-a}+(1-x)^{a-2}(1-x)^{b-a} \\
& \leqslant \frac12\bigl( (1+x)^{a-2}+(1-x)^{a-2} \bigr)\bigl( (1+x)^{b-a}+(1-x)^{b-a} \bigr),
\end{align*}
因为 $0<b-a<1$,则由幂平均不等式,有
\[\left( \frac{(1+x)^{b-a}+(1-x)^{b-a}}2 \right)^{1/(b-a)}\leqslant \frac{1+x+1-x}2=1 \riff (1+x)^{b-a}+(1-x)^{b-a}\leqslant 2,\]
所以
\[(1+x)^{b-2}+(1-x)^{b-2}\leqslant (1+x)^{a-2}+(1-x)^{a-2}.\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-15 18:29
aops看到一个类似的:
...
But by the power means inequality,
$$(1+d_x)^{m-2}+(1-d_x) ^{m-2}\ge(1+d_x)^{n-2}+(1-d_x) ^{n-2}$$
We are done. The right part later.

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit