Forgot password
 Register account
View 2069|Reply 3

[几何] 来自人教论坛的费马点求 $(PA+PC)/PB$

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-3-23 14:42 |Read mode
QQ截图20160323144212.png
由已知等式可知 $P$ 为费马点,如图,将 $\triangle APC$ 绕 $A$ 旋转 $60\du$ 至 $\triangle AP'C'$,则 $\triangle APP'$, $\triangle ACC'$ 均为等边三角形,故 $B$, $P$, $P'$, $C'$ 共线,所以
\[PA+PB+PC=BP+PP'+P'C'=BC',\]
恰好 $\angle BCC'$ 为直角,故易得 $BC'=\sqrt7$,又恰好 $\angle BAC'=120\du$,故 $\triangle BPA\sim \triangle BAC$,所以
\[BP\cdot BC'=BA^2=1,\]
那么
\[\frac{PA+PC}{PB}=\frac{BC'}{PB}-1=BC'^2-1=6.\]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2018-1-15 20:41
原贴的图不见了啊。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2018-1-15 20:54
回复 2# Tesla35

没办法,要怪就只能怪那边不让传附件……

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2018-1-15 20:56
原题印象中是用三角函数等式来表达费马点的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:57 GMT+8

Powered by Discuz!

Processed in 0.029878 seconds, 25 queries