Forgot password?
 Register account
View 1823|Reply 1

[几何] 圆锥曲线的最值问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-4-7 10:14 |Read mode
y^2=4x,过焦点F直线与抛物线交于A,B两点,求OA^2+OB^2的最小值!
纯代数函数方法已经得到答案,看能否用几何或者几何代数结合方法求得答案!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2016-4-8 10:30
设AB中点为C,则2(OA^2+OB^2)=AB^2+(2OC)^2,2(OA^2+OB^2)=AB^2+(2OC)^2=AB^2+4OC^2>=DE^2+4OF^2=16+4=20,所以OA^2+OB^2的最小值为10(等号成立为直线AB垂直于对称轴时).其中,DE为过焦点F且垂直于对称轴的弦

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit