Forgot password?
 Register account
View 1538|Reply 5

求积分

[Copy link]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2016-4-9 01:32 |Read mode
Last edited by 血狼王 2016-4-9 01:54求下面的积分:
$$\int_{0}^{\infty} \frac{1-e^{-x^2}}{x^2}\cos(x)\rmd x$$

$$\int_{0}^{\infty} \frac{1-e^{-x^2}}{x^2}\sin(x)\rmd x$$

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2018-10-26 11:12
回复 1# 血狼王
用MMA算过得到的结果都是非初等的
  1. \!\(
  2. \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(+\[Infinity]\)]\(
  3. \*FractionBox[\(1 -
  4. \*SuperscriptBox[\(E\), \(-
  5. \*SuperscriptBox[\(x\), \(2\)]\)]\),
  6. SuperscriptBox[\(x\), \(2\)]] Cos[x] \[DifferentialD]x\)\)
Copy the Code
  1. \!\(
  2. \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(+\[Infinity]\)]\(
  3. \*FractionBox[\(1 -
  4. \*SuperscriptBox[\(E\), \(-
  5. \*SuperscriptBox[\(x\), \(2\)]\)]\),
  6. SuperscriptBox[\(x\), \(2\)]] Sin[x] \[DifferentialD]x\)\)
Copy the Code

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2018-10-26 14:05
回复 2# 青青子衿

这是什么代码啊?

不是可以复制为 latex 代码吗:
QQ截图20181026141127.png
粘贴后为:
\frac{\sqrt{\pi }}{\sqrt[4]{e}}-\frac{1}{2} \pi  \text{erfc}\left(\frac{1}{2}\right)
两边加上 \ [ \ ] 即
\[\frac{\sqrt{\pi }}{\sqrt[4]{e}}-\frac{1}{2} \pi  \text{erfc}\left(\frac{1}{2}\right)\]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-25 19:24
找到了AOPS上相关帖子 (楼主的帖子)
(2)Find $\int_{0}^{\pi} \frac{1-e^{-x^2}}{x^2}\cos(nx) dx.$ ($n\in \mathbb{N}^+$)

相关:
根据定义,FourierCosCoefficient[(1 - Exp[-x^2])/x^2, x, n]等于$\frac2\pi\int_{0}^{\pi} \frac{1-e^{-x^2}}{x^2}\cos(nx) dx.$
根据Riemann-Lebesgue lemma $\lim_{n\to\infty}\int_{0}^{\pi} \frac{1-e^{-x^2}}{x^2}\cos(nx) dx=0$

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-25 19:25

没有cos的积分 $\int_0^{\infty} \frac{1-e^{-x^2}}{x^2} \ \mathrm{d}x$

Evaluate $\int_0^{\infty} \! \left(1 - e^{-\frac{1}{x^2}}\right) \, dx$.
Quick sub : $x=t^{-1}$, the integral is : $\int_0^{\infty} \frac{1-e^{-x^2}}{x^2} \ \mathrm{d}x$, now define a function $f$ on $\mathbb{R}_+$ such that : \[f(a)= \int_0^{\infty} \frac{1-e^{-a x^2}}{x^2} \ \mathrm{d}x.\] Differentiate to get : $f'(a)=\frac{1}{2} \sqrt{\frac{\pi}{a}}$, then integrate to get : $f(a)=\sqrt{a\pi}$ for any $a\geq 0$ (note that $f(0)=0$).
Therefore the proposed integral is : $f(1)=\sqrt{\pi}$.

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-25 19:34
hbghlyj 发表于 2023-2-25 12:25
Differentiate to get : $f'(a)=\frac{1}{2} \sqrt{\frac{\pi}{a}}$
使用了“积分符号内取微分”的方法

Mobile version|Discuz Math Forum

2025-6-5 18:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit