Forgot password
 Register account
View 1332|Reply 3

求助两个级数极限

[Copy link]

16

Threads

25

Posts

0

Reputation

Show all posts

dim posted 2016-4-16 01:27 |Read mode
Last edited by hbghlyj 2025-5-16 22:34\[
\lim_{x \to 0} \frac{\frac{\frac{\sum_{k=1}^{\infty} \frac{1}{k^2 + k^4 x^2} - \frac{\pi^2}{6}}{x} + \frac{\pi}{2}}x- \frac{1}{2}}{\frac{1 - \coth\left(\frac{\pi}{x}\right)}{x}} = \frac{\pi}{2}
\]\[
\lim_{x \to 0}\frac{\frac{\frac{\sum_{k=1}^{\infty} \frac{1}{k^2 + k^3 x} - \frac{\pi^2}{6} - x \ln(x)}{x} + \gamma}x+ \frac{1}{2}}x = \frac{1}{12}
\]其中$\gamma$是指欧拉常数。

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2016-4-16 02:36
Last edited by 战巡 2016-4-16 04:27回复 1# dim

1、
\[\sum_{k=1}^{\infty}\frac{1}{k^2+k^4x^2}=\sum_{k=1}^{\infty}(\frac{1}{k^2}-\frac{1}{\frac{1}{x^2}+k^2})=\frac{\pi^2}{6}+\frac{x^2}{2}-\frac{\pi x\coth(\frac{\pi}{x})}{2}\]
后面那块求和参见forum.php?mod=viewthread&tid=1668#pid5181

剩下没啥难的,自己搞定吧
最后你会发现极限根本没多大意义,完全就是恒等的,求极限只不过是把$x=0$这个间断点补上

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2016-4-16 09:14
回复 1# dim


2、
\[\sum_{k=1}^{\infty}\frac{1}{k^2+k^3x}=\sum_{k=1}^{\infty}(\frac{1}{k^2}-\frac{x}{k}+\frac{x}{\frac{1}{x}+k})\]
\[=\frac{\pi^2}{6}-x·\lim_{n\to\infty}(\ln(n)+\gamma-(\psi(\frac{1}{x}+1+n)-\psi(\frac{1}{x}+1))=\frac{\pi^2}{6}-x(\gamma+\psi(\frac{1}{x}+1))\]
\[原式=\lim_{x\to0}-\frac{\psi(\frac{1}{x}+1)+\ln(x)}{x^2}+\frac{1}{2x}\]
后面变成双伽马的展开问题,有
\[\psi(\frac{1}{x}+1)=-\ln(x)+\frac{x}{2}-\frac{x^2}{12}+\frac{x^4}{120}+o(x^6)\]
极限自己算吧

16

Threads

25

Posts

0

Reputation

Show all posts

original poster dim posted 2016-4-16 10:50
回复 3# 战巡


    话说那个展开如何算?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 07:54 GMT+8

Powered by Discuz!

Processed in 0.064630 seconds, 30 queries