Forgot password
 Register account
View 2279|Reply 9

[函数] 高三不等式 $x^2e^x-\ln x>1$

[Copy link]

20

Threads

9

Posts

0

Reputation

Show all posts

wzyl1860 posted 2016-4-16 17:26 |Read mode
Last edited by hbghlyj 2025-5-10 16:17当$x>0$时 $x^2e^x-\ln x>1$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-16 17:52
因为 $e^x>x+1\geqslant 2\sqrt x$,所以只要证更强式
\[2x^2\sqrt x-\ln x>1,\]
作置换 $x\to x^2$ 即证 $2x^5-2\ln x>1$,令
\[f(x)=2x^5-2\ln x-1,\]

\[f'(x)=10x^4-\frac2x=\frac{2(5x^5-1)}x
\riff f(x)\geqslant f\left(\frac1{\sqrt[5]{5}}\right)=\frac25\ln5-\frac35,\]
因此只需证明 $2\ln5>3$ 即可,这等价于 $25>e^3$,易知成立,所以原不等式得证

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2016-4-16 18:00
Last edited by hbghlyj 2025-5-10 16:20设$F(x)=x^2 e^x-\ln x$
$\because F'(x)=x^2 e^x+2 x e^x-\frac{1}{x}$ 在 $(0,+\infty)$ 单增。
$\therefore F'(x)=0$ 有唯一解,设为 $x_0$
由零点存在定理,可知 $x_0 \in\left(0, \frac{1}{2}\right)$
$\therefore F(x)$ 在 $x=x_0$ 时,取到最小值。
且 $x_0^2 e^{x_0}+2 x_0 e^{x_0}-\frac{1}{x_0}=0 \quad \therefore e^{x_0}=\frac{\frac{1}{x_0}}{x_0^2+2 x_0}$
$F(x)$ 的最小值为
\[
F(x_0)=x_0^2 e^{x_0}-\ln x_0=\frac{1}{x_0+2}-\ln x_0 \quad x_0 \in\left(0, \frac{1}{2}\right)
\]
易知 $F(x_0)>\frac{1}{\frac{1}{2}+2}-\ln \frac{1}{2}=\frac{2}{5}+\ln 2>1$

20

Threads

9

Posts

0

Reputation

Show all posts

original poster wzyl1860 posted 2016-4-16 18:02
k版,果然好手段,学习了!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-16 18:13
回复 3# longzaifei

初时我也想过这样做,但要估计零点什么的,于是想到不如先放缩一下试试,果然搞定

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2016-4-17 11:36
Last edited by realnumber 2016-4-17 11:48利用这个\[x\ge \ln{(1+x)}     即x-1\ge \ln{x}\]
\[x^2e^x-\ln{x}\ge x^2e^x-x+1>1\]
上式对$x\ge  1$成立.
而$0<x\le\frac{1}{e}$时,$x^2e^x>0,-\ln{x}>1$.
$1>x>\frac{1}{e}$时,怎么办?

72

Threads

96

Posts

0

Reputation

Show all posts

v6mm131 posted 2016-4-17 12:00
Last edited by hbghlyj 2025-5-10 16:25分离 碰运气
问题:$x>0$,证明:$f(x)=x^2 e^x-\ln x>1$
解答:问题等价于证明:$\frac{e^x}{x}>\frac{1+\ln x}{x^3}$
不妨令 $g(x)=\frac{e^x}{x}, h(x)=\frac{1+\ln x}{x^3}$
一方面:$g'(x)=\frac{e^x(x-1)}{x^2}$
当 $x \in(0,1), g'(x)<0, g(x)$ 单调递减
当 $x \in(1,+\infty), g'(x)>0, g(x)$ 单调递增
所以 $x=1$ 时, $g(x)=\frac{e^x}{x}$ 的最小值是 $e$,当且仅当 $x=1$ 时取等号;
另一方面:$h'(x)=-\frac{2+3 \ln x}{x^4}$
当 $x \in\left(0, e^{-\frac{2}{3}}\right)$, $g'(x)>0$, $g(x)$ 单调递增
当 $x \in\left(e^{-\frac{2}{3}},+\infty\right)$, $g'(x)<0$, $g(x)$ 单调递减
所以 $x=e^{-\frac{2}{3}}$ 时, $g(x)=\frac{e^x}{x}$ 的最大值是 $\frac{e^2}{3}$,当且仅当 $x=e^{-\frac{2}{3}}$ 时取等号;
注意到 $e>\frac{e^2}{3}$,从而可知对一切 $x \in(0,+\infty)$ 都有 $\frac{e^x}{x}>\frac{1+\ln x}{x^3}$即 $x^2 e^x-\ln x>1$ 得证。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-17 19:08
回复 7# v6mm131

这也行……

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-4-18 12:00
回复 7# v6mm131
出题人的意图就是作者的思路!。牛!!!

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-4-19 11:57
未命名.PNG

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:33 GMT+8

Powered by Discuz!

Processed in 0.014811 seconds, 28 queries