Forgot password?
 Register account
View 2352|Reply 4

[几何] 来自人教群的正方体三顶点到平面距离

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-4-18 15:45 |Read mode
渝X教师,周伟(2859*****)  15:05:28
QQ图片20160418154525.png
15题
设 $\alpha$ 上的法向量为 $\bm n$,设 $\bm b=\vv{AB}$, $\bm c=\vv{AC}$, $\bm d=\vv{AD}$,则
\[\cos^2\langle\bm n,\bm b\rangle+\cos^2\langle\bm n,\bm c\rangle+\cos^2\langle\bm n,\bm d\rangle=1,\]
设 $D$ 到 $\alpha$ 的距离为 $m$,则
\[\left(\frac13\right)^2+\left(\frac{\sqrt2}3\right)^2+\left(\frac m3\right)^2=1,\]
解得 $m=\sqrt6$。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-18 16:11
15题直接用空间坐标把3个距离表示出来也简单的,上面14题把目标展开配方,变成直线与圆的位置关系,有点坑。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2016-4-18 16:14
话说,这么看来“三条棱在 $\alpha$ 同侧”似乎是多余的。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-4-21 11:24
回复 1# kuing
这解法很妙啊!空间向量在任意三个互相垂直的基向量方向余弦平方和为1!也可以类比平面向量得到该结论!

1

Threads

23

Posts

127

Credits

Credits
127

Show all posts

chen、bin Posted 2016-5-12 22:33
空间向量在任意三个互相垂直的基向量方向余弦平方和为1学习了,待我自己证明一下

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit