Forgot password?
 Register account
View 2564|Reply 8

[不等式] 求取值范围

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2016-4-19 23:00 |Read mode
Last edited by hbghlyj 2025-5-18 11:58已知实数 $a, b$ 满足:$a \geq \frac{1}{2}, b \inR$,且 $a+|b| \leq 1$,则 $\frac{1}{2 a}+b$ 的取值范围是

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-4-19 23:09
显然必有 $a\in[1/2,1]$,则 $\frac1{2a}-(1-a)\le \frac1{2a}+b\le\frac1{2a}+1-a$,分别求左边最小及右边最大。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-4-20 08:21
显然最大值为3/2,a-1<=b,根号2-1=<1/2a+a-1=<1/2a+b,等号成立a=根号2/2,
答案;[根号2-1,3/2].

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2016-4-20 09:50
回复 2# kuing


    嗯嗯,一语惊醒梦中人,怎么给你一讲就这么简单谢谢咯

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2016-4-20 09:51
回复 3# 敬畏数学


    嗯嗯,是这个答案,谢谢啦

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-20 21:31
回复 4# lrh2006

你是被条件吓着了吧

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-4-20 23:38
回复 6# 色k


    这(样的题)对你太太弱了

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2016-4-21 09:26
回复 6# 色k


    哈哈,有点吧

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-29 14:54
回复 2# kuing


    二元问题的一种方法:一静一动,一个动完,另一个再动。

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit