Forgot password
 Register account
View 2957|Reply 15

任给8个实数,如下运算后证明有至少一个非负

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-10-10 14:16 |Read mode
Last edited by isee 2013-10-10 15:32应楼下要求给出两个写法,题一样


一种写法:

任给8个实数$a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8$,求证:
\[a_1a_3+a_2a_4,a_1a_5+a_2a_6,a_1a_7+a_2a_8,a_3a_5+a_4a_6,a_3a_7+a_4a_8,a_5a_7+a_6a_8\]
这6个数中至少有一个非负。


另一种写法:

任给8个实数$a,b,c,d,e,f,g,h$,求证:$ac+bd,ae+bf,ag+bh,ce+df,cg+dh,eg+fh$这6个数中至少有一个非负。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-10 14:24
用 $a_1$, $a_2$, ... 来表达会不会容易看一点……

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-10-10 14:41
回复 2# kuing


   
刚开始是那么写的,后来考虑到打下标其实也麻烦,所以就改成从a开始的8个字母了。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-10 14:46
回复 3# isee

但是我们看的就很麻烦,下标方便看清楚位置关系,abcdefg 不熟悉

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-10-10 15:28
回复 4# kuing


   

加一种另外的书写了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-10 15:46
回复 5# isee

这样就好看多了,刚才那种读到后面就乱了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-10 18:12
令 $\vv{a_{ij}}=(a_i,a_j)$,则六个数分别为 $\vv{a_{12}}\cdot\vv{a_{34}}$, $\vv{a_{12}}\cdot\vv{a_{56}}$, $\vv{a_{12}}\cdot\vv{a_{78}}$, $\vv{a_{34}}\cdot\vv{a_{56}}$, $\vv{a_{34}}\cdot\vv{a_{78}}$, $\vv{a_{56}}\cdot\vv{a_{78}}$,可以看到,实际上式子里只出现了四个向量 $\vv{a_{12}}$, $\vv{a_{34}}$, $\vv{a_{56}}$, $\vv{a_{78}}$,六个数分别就是它们之间两两的内积,因此问题转化为四个平面向量中,至少有一对向量的夹角不是钝角,此乃显然。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-10-10 19:44
令 $\vv{a_{ij}}=(a_i,a_j)$,则六个数分别为 $\vv{a_{12}}\cdot\vv{a_{34}}$, $\vv{a_{12}}\cdot\vv{a_{56 ...
kuing 发表于 2013-10-10 18:12
秒得很顺

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-10 22:42
回复 8# isee
k的这个证法也太牛笔了吧?
妙不可言,不明其妙,不着一字,各释其妙!

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-10-18 09:28
回复  isee
k的这个证法也太牛笔了吧?
其妙 发表于 2013-10-10 22:42
与我见到的标签一模一样,思维很阔

不知还有没其它证法

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2013-10-18 09:59
回复 10# isee
标签? 你这是用五笔还是笔画?
I am majia of kuing

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2013-10-18 12:17
回复 11# 爪机专用


五笔,没标答这个词组

手机上网时从不回帖 麻烦

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-12-10 11:43
QQ图片20131210114228.jpg
题目存档

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-12-10 14:19
回复 13# Tesla35

这题跟1#的有联系?

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-12-10 15:15
回复 14# kuing
都是构造啊。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-10-31 08:27
Last edited by kuing 2023-11-6 02:5213# 题目翻译成几何命题就是:
格点 n 边形的 n 条边长全相等,则 n 必为偶数。

证明我不会

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 21:04 GMT+8

Powered by Discuz!

Processed in 0.013782 seconds, 27 queries