Forgot password?
 Register account
View 2094|Reply 8

[不等式] 不等式一题,平方还行吗?

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-4-25 07:58 |Read mode
Last edited by realnumber 2016-4-25 14:06求证:
\[\sqrt{2}+\sqrt{6}+\sqrt{8}>\sqrt{3}+\sqrt{5}+\sqrt{7} \]

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-25 10:39
左边>1.41+2.44+2.82=6.67,右边<1.74+2.24+2.65=6.63

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-25 13:01
真沒意思

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-4-25 14:04
Last edited by realnumber 2016-4-25 14:14
我改下题目,还是好不了多少....
\[n>0,proof :\sqrt{n+2}+\sqrt{n+6}+\sqrt{n+8}>\sqrt{n+3}+\sqrt{n+5}+\sqrt{n+7} \]

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-25 15:23
未命名.PNG

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-25 15:58
未命名.PNG

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-4-25 16:20
回复 4# realnumber

这样还好些,不过也没什么难度,等价于
\[\sqrt{n+8}-\sqrt{n+7}+\sqrt{n+6}-\sqrt{n+5}>\sqrt{n+3}-\sqrt{n+2},\]
分子有理化为
\[\frac1{\sqrt{n+8}+\sqrt{n+7}}+\frac1{\sqrt{n+6}+\sqrt{n+5}}
>\frac1{\sqrt{n+3}+\sqrt{n+2}},\]
只需证
\[\frac2{\sqrt{n+8}+\sqrt{n+7}}>\frac1{\sqrt{n+3}+\sqrt{n+2}},\]
只需证
\[\sqrt{\frac{n+8+n+7}2}<\sqrt{n+3}+\sqrt{n+2},\]
两边平方易证之。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-4-25 16:32
回复 7# kuing


    你放缩够狠的!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-4-25 17:04
回复 8# 游客

全部分子有理化之后已经看出不等式很弱了,所以可以放心放缩

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit