Forgot password
 Register account
View 2104|Reply 8

[组合] 4×4方格填数—答案怎么解释

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2016-4-26 10:05 |Read mode
排列组合.png

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2016-4-26 10:48
回复 1# guanmo1

拉丁方问题,没有通项,反正四阶拉丁方576种排列是已知的

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-4-26 12:43
未命名.PNG

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-26 13:09

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-4-26 13:45
(4+2+2)X3X24 ?
为什么前3种个数不一样?后面各型是否也会个数不一样呢?
难道要排满576种?还是先解释下前3种型不一样的原因吧。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-4-26 20:52
拉丁方问题 标记一下。

PS:和这个有关系不?
forum.php?mod=viewthread&tid=3421

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-4-27 22:24
?????没有答案啊。。

3208

Threads

7835

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-2-22 01:15

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-2-22 10:52
硬算吧. 列举知首行与首列满足以下情形的 Latin square 共 $4$ 种.
$$
\begin{pmatrix}
A&B&C&D\\
B&\ast&\ast&\ast\\
C&\ast&\ast&\ast\\
D&\ast&\ast&\ast\\
\end{pmatrix}
$$
然后每种可通过置换 (行 $4!$, 列 $3!$; 或等价地, 列 $4!$, 行 $3!$) 生成 $4!\cdot 3!$ 种 Latin square. 共 $(4!)^2$ 种.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 04:52 GMT+8

Powered by Discuz!

Processed in 0.013094 seconds, 25 queries