Forgot password
 Register account
View 2116|Reply 5

[不等式] 一道绝对值不等式问题

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-4-29 09:49 |Read mode
设实数a使得不等式|2x−a|+|3x−2a|≥a^2对任意实数x恒成立,则满足条件的a所组成的集合是______?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-29 11:47
设 $f(x)=\abs{2x-a}+\abs{3x-2a}$,无论 $a$ 为何值,$f(x)$ 都是开口向上的折线,其最小值必在折线的折点处取得,即
\[f(x)_{\min}=\min\left\{f\left(\frac a2\right),f\left(\frac{2a}3\right)\right\}
=\min\left\{\frac12\abs a,\frac13\abs a\right\}=\frac13\abs a,\]
所以问题等价于
\[\frac13\abs a\geqslant a^2 \iff \frac13\geqslant \abs a \iff a\in\left[-\frac13,\frac13\right].\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-4-29 11:52
如果不喜欢扯上折线什么的,第一步也可以改用放缩+绝对值不等式
\[\abs{2x-a}+\abs{3x-2a}
\geqslant \abs{2x-a}+\frac23\abs{3x-2a}
\geqslant \left|2x-a-\frac23(3x-2a)\right|
=\frac13\abs a,\]
当 $x=2a/3$ 时取等,下同。

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-4-29 12:36
OK!以上两种方法都非常棒!

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-4-29 13:40
未命名.PNG

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-4-29 14:24
回复 5# 游客
嗯。对。。。。。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:46 GMT+8

Powered by Discuz!

Processed in 0.014040 seconds, 25 queries