Forgot password?
 Register account
View 2012|Reply 8

[几何] 解三角形

[Copy link]

4

Threads

9

Posts

75

Credits

Credits
75

Show all posts

450660879 Posted 2016-4-30 17:42 |Read mode
Last edited by 450660879 2016-4-30 18:20在$\triangle ABC$ 中$\sqrt{3}ab\sin C-ab\cos C=c^2$,求角$C$.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-30 18:09
两边乘以$2$再用面积公式和余弦定理为 $4\sqrt3S-(a^2+b^2-c^2)=2c^2$,即 $a^2+b^2+c^2=4\sqrt3S$,根据熟知的外森比克不等式,可知这只能是等边三角形。

PS、楼主的公式输入需改进:\mbox{sin}C 应改为 \sin C

4

Threads

9

Posts

75

Credits

Credits
75

Show all posts

 Author| 450660879 Posted 2016-4-30 18:21
谢谢。有没有不用外森比克不等式的做法?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-30 19:16
將外森比克不等式的證明套上去就可以寫成“不用外森比克不等式”的解法了啊

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-30 22:49
比如说,可以抄一下外森比克不等式的内切圆代换证法:
令 $a=y+z$, $b=z+x$, $c=x+y$, $x$, $y$, $z>0$,则
\begin{align*}
a^2+b^2+c^2-4\sqrt3S&=\sum(x+y)^2-4\sqrt{3xyz(x+y+z)}\\
&=\sum(x-y)^2+4\bigl(xy+yz+zx-\sqrt{3xyz(x+y+z)}\bigr),
\end{align*}
易证 $xy+yz+zx\geqslant\sqrt{3xyz(x+y+z)}$,故当 $a^2+b^2+c^2=4\sqrt3S$ 时只能 $x=y=z$,即正三角形。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-4-30 22:59
昂,你想要的证法大概是酱紫的:
\begin{align*}
\sqrt3ab\sin C-ab\cos C=c^2
&\iff \sqrt3ab\sin C-ab\cos C=a^2+b^2-2ab\cos C\\
&\iff ab\bigl(\sqrt3\sin C+\cos C\bigr)=a^2+b^2\\
&\iff 2ab\sin(C+30\du)=a^2+b^2,
\end{align*}
故由 $a^2+b^2\geqslant2ab\geqslant2ab\sin(C+30\du)$ 可知只能 $a=b$ 且 $C=60\du$。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-5-1 22:59
昂,你想要的证法大概是酱紫的:
\begin{align*}
\sqrt3ab\sin C-ab\cos C=c^2
&\iff \sqrt3ab\sin C-ab\co ...
色k 发表于 2016-4-30 22:59
这样一看,这题有点意思的三角题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-1 23:13
回复 7# isee

这个证法实际上也是外森比克不等式的经典证法之一,相对来说较容易被中学所接受。

4

Threads

9

Posts

75

Credits

Credits
75

Show all posts

 Author| 450660879 Posted 2016-5-4 09:37
回复 6# 色k


   
谢谢。。。

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit