Forgot password?
 Register account
View 1231|Reply 8

一个代数变形问题

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2016-5-1 16:12 |Read mode
已知正实数a,b,c满足$  a\geqslant b\geqslant c$,且\[ a^2-ab+bc=b^2-bc+ca=c^2-ca+ ab=1\],求a,b,c的值。
可以猜出a,b,c都为1,但不知道如何变形。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-1 22:47
还好我先开挂看看,果然发现还有一个解:$a \approx 1.437$, $b \approx 0.924139$, $c \approx 0.284615$(遇三次方程)

虽然不算错题,不过还是扔掉吧……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-1 23:06
代求根公式具体搞出来最终就是
\begin{align*}
a&=\sqrt{1+\frac2{\sqrt3}\cos\left(\frac13\arccos\frac{3\sqrt3}{14}\right)},\\
b&=\sqrt{1+\frac2{\sqrt3}\cos\left(\frac13\arccos\frac{3\sqrt3}{14}-\frac{2\pi}3\right)},\\
c&=\sqrt{1+\frac2{\sqrt3}\cos\left(\frac13\arccos\frac{3\sqrt3}{14}+\frac{2\pi}3\right)}.
\end{align*}

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2016-5-2 07:07
回复 3# kuing

那直接去掉=1,就是解\[ a^2-ab+bc=b^2-bc+ca=c^2-ca+ab \]呢?那就用c表示a,b了?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-2 12:40
回复 4# 力工

那就上述解乘以任意一个系数都是解了啊

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2016-5-2 19:42
回复 1# 力工

这类问题江湖上很多,一不小心就碰上了

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2016-5-2 20:12
回复 6# 血狼王

有人的地方就有江湖。

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2016-5-2 20:44
一个类似的问题:
解方程组
$\led a^2+2ab&=3 \\ b^2+2bc&=3 \\ c^2+2ca&=3 \endled$

很简单?
只是看上去是而已。
内有乾坤

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-2 21:06
回复 8# 血狼王

消元后 $(a^2-1)(a^6-27a^4+99a^2-9)=0$
或 $(a^2-1)(a^3-3a^2-9a+3)(a^3+3a^2-9a-3)=0$
反正也是三次方程的料……
当然,这个解的表达式简单些……

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit