Forgot password?
 Register account
View 2140|Reply 2

[不等式] 来自人教群的$a^2+b^2+c^2+d^2+(a+b+c+d)^2$最小值

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-4 18:37 |Read mode
苏A爱好syzychenwj(7643*****) 17:47:13
QQ图片20160504183448.png
由CS有
\begin{align*}
&10\bigl( a^2+b^2+c^2+d^2+(a+b+c+d)^2 \bigr)\\
={}&\bigl( (-1)^2+0^2+1^2+2^2+2^2 \bigr)\bigl( a^2+b^2+c^2+d^2+(a+b+c+d)^2 \bigr) \\
\geqslant{}& \bigl( -a+c+2d+2(a+b+c+d) \bigr)^2 \\
={}&(a+2b+3c+4d)^2\\
={}&10,
\end{align*}
即得
\[a^2+b^2+c^2+d^2+(a+b+c+d)^2\geqslant 1,\]
取等条件为
\[a=-\frac1{\sqrt{10}},b=0,c=\frac1{\sqrt{10}},d=\frac2{\sqrt{10}},\]
所以最小值就是 $1$。

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

caesarxiu Posted 2017-1-5 23:02
要想到把10改拆分挺不容易的,难也就难在这里

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-12-13 22:59
Last edited by isee 2021-12-13 23:21题:正实数满足 $a+2b+3c+4d=\sqrt {10}$,则 $a^2+b^2+c^2+d^2+(a+b+c+d)^2$ 的最小值为__1__.

直接拆也需要凑,尝试含参数柯西不等式

\begin{align*}
10=\bigg((1-x)a&+(2-x)b+(3-x)c+(4-x)d+x(a+b+c+d)\bigg)^2\\
&\leqslant \bigg((1-x)^2+(2-x)^2+(3-x)^2+(4-x)^2+x^2\bigg)(a^2+b^2+c^2+d^2+(a+b+c+d)^2),
\end{align*}

由于顶楼已经有结果了,令\[x=2,\]收工

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit