|
未解决
Last edited by realnumber 2016-6-7 08:581楼系数为1时的证明
\[\frac{1}{a_1^3}+\frac{2^3}{a_1^3+a_2^3}+\frac{3^3}{a_1^3+a_2^3+a_3^3}+ \cdots +\frac{n^3}{a_1^3+a_2^3+ \cdots +a_n^3}\le(\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^3----①\]
\[设f(a_n)=(\frac{1}{a_1^3}+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^3-(\frac{1}{a_1^3}+\frac{2^3}{a_1^3+a_2^3}+\frac{3^3}{a_1^3+a_2^3+a_3^3}+\cdots+\frac{n^3}{a_1^3+a_2^3+ \cdots +a_n^3})\]
以下证明$f(a_n)$为减函数.
\[f'(a_n)=3(\frac{1}{a_1}+\frac{1}{a_2}+ \cdots +\frac{1}{a_n})^2(-\frac{1}{a_n^2})+\frac{3a_n^2n^3}{(a_1^3+a_2^3+\cdots +a_n^3)^2}\le 0\]
\[等价于n^3a_n^4\le (\frac{1}{a_1}+\frac{1}{a_2}+ \cdots +\frac{1}{a_n})^2(a_1^3+a_2^3+\cdots +a_n^3)^2 \]
\[令\frac{a_i}{a_n}=b_i,i=1,2,3,\cdots ,n-1\]
\[等价于n^{1.5}\le (\frac{1}{b_1}+\frac{1}{b_2}+ \cdots +\frac{1}{b_{n-1}}+1)(b_1^3+b_2^3+\cdots +b_{n-1}^3+1)---①\] |
|