Forgot password?
 Register account
View 3569|Reply 10

[不等式] 转:一个经典问题的推广

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-12 11:56 |Read mode
Last edited by realnumber 2016-5-12 12:54 QQ图片20160510091224---.png
西西:81/32可以放小 更能最好系数是1, 不过目前没有解决
左边第2项,右边一项的下标要修改为2,n

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-5-12 12:04
Last edited by realnumber 2016-6-14 08:45 QQ图片20160512120155---1.png
下面的证明也拍个爪子:余姚三中   朱世杰
b7abba5agd0b9adb869cc&690---001.gif
b7abba5agd0b9aeb8e618&690--002.gif

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-5-17 23:25

未解决

Last edited by realnumber 2016-6-7 08:581楼系数为1时的证明
\[\frac{1}{a_1^3}+\frac{2^3}{a_1^3+a_2^3}+\frac{3^3}{a_1^3+a_2^3+a_3^3}+ \cdots +\frac{n^3}{a_1^3+a_2^3+ \cdots +a_n^3}\le(\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^3----①\]
\[设f(a_n)=(\frac{1}{a_1^3}+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^3-(\frac{1}{a_1^3}+\frac{2^3}{a_1^3+a_2^3}+\frac{3^3}{a_1^3+a_2^3+a_3^3}+\cdots+\frac{n^3}{a_1^3+a_2^3+ \cdots +a_n^3})\]
以下证明$f(a_n)$为减函数.
\[f'(a_n)=3(\frac{1}{a_1}+\frac{1}{a_2}+ \cdots +\frac{1}{a_n})^2(-\frac{1}{a_n^2})+\frac{3a_n^2n^3}{(a_1^3+a_2^3+\cdots +a_n^3)^2}\le 0\]
\[等价于n^3a_n^4\le (\frac{1}{a_1}+\frac{1}{a_2}+ \cdots +\frac{1}{a_n})^2(a_1^3+a_2^3+\cdots +a_n^3)^2 \]
\[令\frac{a_i}{a_n}=b_i,i=1,2,3,\cdots ,n-1\]
\[等价于n^{1.5}\le (\frac{1}{b_1}+\frac{1}{b_2}+ \cdots +\frac{1}{b_{n-1}}+1)(b_1^3+b_2^3+\cdots +b_{n-1}^3+1)---①\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-18 15:25
很遗憾,你希望成立的\[n^{1.5}\le (\frac{1}{b_1}+\frac{1}{b_2}+ \cdots +\frac{1}{b_{n-1}}+1)(b_1^3+b_2^3+\cdots +b_{n-1}^3+1)\]它并不成立,取 $b_{1}=b_{2}=\cdots =b_{n-1}=(n-1)/x$,此时
\[RHS-LHS=(x+1)\left( \frac{(n-1)^4}{x^3}+1 \right)-\sqrt{n^3},\]
取 $n=49$, $x=192$,上式为 $-21/4$。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-10 10:23
放弃会,
假设$a_{k}>a_{k+1}$,那么交换两者的值,右边不变,左边更大.
所以只需在$1=a_1\le a_2 \cdots \le a_n$条件下证明本题 .
\[(1+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^3(1+a_2^3+\cdots +a_n^3)\ge n^4\]
\[(1+\frac{1}{a_2}+\cdots +\frac{1}{a_n})^2(1+a_2^3+\cdots +a_n^3)\ge n^3\]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2016-6-10 12:48
回复 5# realnumber
叫我干啥

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-19 10:14
Last edited by realnumber 2016-6-20 22:59证明:
$若1=a_1\le a_2 \le \cdots \le a_n,$

\[则1+\frac{2^2}{1+a_2^2}+\cdots +\frac{n^2}{1+a_2^2+\cdots +a_n^2}\le (1+\frac{1}{a_2}+\cdots+\frac{1}{a_n})^2. \]
按西西的说法,杨学枝老师几年前已经解决本帖2次情景.
1楼系数为$\frac{81}{32}$以及次数n次的,西西都已经解决.而系数为1的,3次以及以上,还是没解决.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-27 10:45
Last edited by realnumber 2017-1-7 22:57 $type 一个经典问题的推广_朱世杰.doc (76 KB, Downloads: 6195) QQ截图20160627094307---1.jpg
QQ截图20160627094307---2.jpg
以上就是西西提到的杨的证明,为了便于理解,配了个下标搭配的图.

如果能把3次的搭配出来,那么问题就解决了.似乎有点眉目.



终于搭配好,已经推广到n次,本题终于解决.过段时间发上来.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-28 11:34
Last edited by realnumber 2016-6-28 18:501楼系数为1的证明过段时间发上来,
很不负责任地贴个猜想
QQ截图20160628100732--1.jpg

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2016-7-4 21:36
看来西西当山大附中的竞赛教练了

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-1-7 22:58
8楼附件已经放了1楼解答.

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit