Forgot password?
 Register account
View 1918|Reply 1

[不等式] 转:一个有理化不等式放缩

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-12 20:15 |Read mode
湖南颜文杰
QQ图片20160512201424pppp.png
通分,有理化bn<1/(2(n+2)(n+1))

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-5-12 21:43
\[b_n=\frac{\sqrt{n}}{(n+1)\sqrt{n+2}}((n+1)-\sqrt{n(n+2)})=\frac{\sqrt{n}}{(n+1)\sqrt{n+2}}\frac{1}{(n+1)+\sqrt{n(n+2)}}<\frac{\sqrt{n}}{(n+1)\sqrt{n+2}}\frac{1}{2\sqrt{n(n+2)}}=\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+2})\]

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit