Forgot password?
 Register account
View 1983|Reply 3

[不等式] 已知a>0,b<0,且(4a-1)(2b+1)= -9,若$(2a-b)x^2-abx-6≥0$总成立

[Copy link]

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-5-19 08:41 |Read mode
Last edited by hbghlyj 2025-3-21 04:53题目:已知 $a>0, b<0$,且 $(4 a-1)(2 b+1)=-9$,若 $(2 a-b) x^2-a b x-6 \geq 0$总成立,则实数 $x$ 的取值范围是   
\[
(4 a-1)(2 b+1)=-9 \Rightarrow(2 a-b)+4 a b=-4 .
\]
\[
\text { 记 } m=2 a-b, n=a b \text {, 则: }
\]
\[
m+4 n=-4, n \leq-2, m x^2-n x-6 \geq 0 \text { 总成立. }
\]
作图(线性规划)得:$x \geq 1$ 或 $x \leq-\frac{3}{2}$ .
有巧妙点的方法没?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2016-5-19 16:28
Last edited by realnumber 2016-5-19 16:44鄞州慈溪余姚2016_5文科第15题
已知正实数$a,b$满足$2a+b+4=4ab$,若$(2a+b)x^2+abx-6\ge 0$总成立,则正实数x的取值范围是____________.
1楼是理科的.

是看了你的答案去凑的
由$4ab=2a+b+4\ge 2\sqrt{2ab}+4$,解得$ab\ge 2$
所以当 $x\ge1时$$(2a+b)x^2+abx-6=(4ab-4)x^2+abx-6=ab(4x^2+x)-4x^2-6\ge 2(4x^2+1)-4x^2-6=4x^2-4\ge 0$
当$0<x<1$时,令$ab=2$,此时$(2a+b)x^2+abx-6=4x^2+2x-6<0$
所以$x\ge1$.

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

 Author| 游客 Posted 2016-5-19 18:29
2a+b=4ab-4 代入不等式,把ab看成整体,不等式左边就是一射线。(文科题)

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-11-24 08:36
回复 3# 游客
昨天就碰到此题,此解法

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit