Forgot password
 Register account
View 1628|Reply 1

[数列] 鄞州慈溪余姚2016_5理科第20题

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2016-5-19 16:11 |Read mode
设$M_n$是数列{$a_n$}的前n项之积,满足$M_n+a_n=1,n\in N^*$.
(1)求数列{$a_n$}的通项公式;
(2)设$S_n=M_1^2+M_2^2+\cdots +M_n^2$,求证:$-\frac{5}{12}\le S_n-a_{n+1}<-\frac{1}{3}$.










(1)通过特殊$a_1,a_2,a_3$猜到一般$a_n$,因此换元$1-a_n=b_n,c_n=\frac{1}{b_n}$,可得{$c_n$}为等差数列.
\[(2)S_n=\frac{1}{2^2}+\frac{1}{3^2}+\cdots +\frac{1}{(n+1)^2}< \frac{1}{4}+\frac{1}{9}+\frac{1}{4^2-0.5^2}+\cdots +\frac{1}{(n+1)^2-0.5^2}=\frac{1}{4}+\frac{1}{9}+\frac{1}{3.5}-\frac{1}{n+1.5}\]

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2016-5-23 12:56
同事韩的办法
\[\frac{1}{(n+1)^2}<\frac{1}{n^2+2n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2}),n\ge 3\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:30 GMT+8

Powered by Discuz!

Processed in 0.011117 seconds, 22 queries