Forgot password
 Register account
View 1732|Reply 3

[数列] 转:某群数列放缩题

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2016-5-19 19:58 |Read mode
QQ图片20160519195732519.jpg

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2016-6-5 11:20
1.用数学归纳法
2.不会.罗列一些性质,也许会有帮助.
可以证明递增,以及
$a_{n+1}-a_n<0.5$,进一步可得$a_{n+1}< 2+0.5n$
n用n-1替换,再2个等式相减,可得
$a_{n+1}-a_n\ge a_n-a_{n-1}$,由$a_2-a_1>0.3$进一步可得$a_n\ge 2+0.3(n-1)$

3

Threads

8

Posts

0

Reputation

Show all posts

djjtyq posted 2016-6-5 16:12
由$a_{k+1}\geq \dfrac{k+8}{4},$得\[a_{k+1}^2-a_k^2=a_{k+1}-1\geq \dfrac{k+4}{4},\]两边求和有\[\sum_{k=1}^{n-1}(a_{k+1}^2-a_k^2)\geq \sum_{k=1}^{n-1}\left ( \dfrac{k+4}{4} \right ),\]即\[a_n^2-a_1^2\geq \dfrac{n^2+7n-8}{8}\Longrightarrow a_n^2\geq \dfrac{n^2+7n+24}{8},\]则\[\dfrac{1}{2a_n^2-3}\leq \dfrac{4}{n^2+7n+12}=4\left ( \dfrac{1}{n+3}-\dfrac{1}{n+4} \right ).\]

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2016-6-5 19:06
回复 3# djjtyq


    明白了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.012511 seconds, 25 queries