Forgot password?
 Register account
View 1872|Reply 1

[函数] $1-x+\frac{x^2}2-\cdots+\frac{x^{2n}}{(2n)!}>0$

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2016-5-20 14:08 |Read mode
QQ图片20160520140555--哦常常.jpg
\[记f_n(x)=1-x+\cdots +(-1)^n\frac{x^n}{n!}\]
n=2时,成立
假设$n=2k,k\ge1$有$f_n(x)\ge 0$成立.
而$f'_{2k+1}(x)=-f_{2k}(x)<0$,说明$f_{2k+1}(x)$为减函数,$f_{2k+1}(0)>0,f_{2k+1}(2k+1)<0$,可得$f_{2k+1}(x)=0$有唯一零点,不妨设零点为x=t.
$n=2k+2$时,$f''_{2k+2}(x)=f_{2k}(x)>0$,说明$f_{2k+2}(x)$图象下凸.
此时$f_{2k+2}(x)$的最小值为$f_{2k+2}(t)=f_{2k+1}(t)+\frac{x^{2k+2}}{(2k+2)!}=0+\frac{x^{2k+2}}{(2k+2)!}>0$
...完.

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2016-5-20 19:33
广东严文兰老师的证明:
QQ截图20160404110858.png

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit