Forgot password?
 Register account
View 1804|Reply 5

[函数] 函数问题

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2016-5-22 15:37 |Read mode
3K$]63F6F)@O4N7SOJ6VL]3.png

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-5-23 09:48
????

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2016-5-23 10:56
Last edited by realnumber 2016-5-23 12:26几何画板实验后,应该是a=1.
证明得想想,函数好复杂.下午来试.
\[\lim_{x\to 0}f(x)=\lim_{x\to 0}(\frac{(\ln{(x+1)})'}{(e^x-1)'}+ax)=1,用了洛必达法则\]
要符合题意,必要条件是$\lim_{x\to 0^+}f'(x)\ge 0$且$\lim_{x\to 0^-}f'(x)\le 0$
\begin{align*}
而\lim_{x\to 0}f'(x)  & =\lim_{x\to 0}\frac{\frac{e^x-1}{x+1}-e^x\ln{(x+1)}}{(e^x-1)^2}+a=\lim_{x\to 0}\frac{(\frac{e^x-1}{x+1}-e^x\ln{(x+1)})'}{((e^x-1)^2)'}+a \\
   & =\lim_{x\to 0}\frac{\frac{xe^x+1}{(x+1)^2}-e^x\ln{(x+1)}-\frac{e^x}{x+1}}{2(e^x-1)e^x}+a=\lim_{x\to 0}\frac{(\frac{xe^x+1}{(x+1)^2}-e^x\ln{(x+1)}-\frac{e^x}{x+1})'}{(2(e^x-1)e^x)'}+a \\
  &=\lim_{x\to 0}\frac{\frac{(xe^x+e^x)(x+1)^2}{(x+1)^4}-2(x+1)(xe^x+1)-e^x\ln{(x+1)}-\frac{e^x}{x+1}-\frac{xe^x}{(x+1)^2}}{2e^x(e^x-1)+2e^{2x}}+a \\ &=-1+a=0 \\
  & 所以a=1. 而当a=1时,验证下充分性,x>0,f(x)> 1;  x<0,f(x)>1  \\
\end{align*}
高中办法还不会.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-5-23 12:38
整了半天,没有结果啊!继续探下午。。。。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2016-5-23 13:13
高中勉强可用了
\begin{align*}
& 当x>0时,问题等价于 \ln{(x+1)}+(ax-1)(e^x-1)>0 \\
& 记 h(x)=\ln{(x+1)}+(ax-1)(e^x-1),x\ge 0 \\
& h(0)=0,h'(x)=\frac{1}{x+1}+a(e^x-1)+(ax-1)e^x=(xe^x+e^x-1)(a-\frac{1}{x+1}) \\
& 因为xe^x+e^x-1>0,所以a-\frac{1}{x+1}\ge 0,(当x \to 0^+),即a\ge 1 \\
& 当x<0时,xe^x+e^x-1<0类似得到a\le 1. \\
& 所以 a=1. \\
& 再验证下充分性,同2楼验证办法. \\
& 完  \\





\end{align*}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-5-23 14:12
看来又玩那种老掉的题。最好别再整这样的题了。不过这次充分性太容易了。

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit