Forgot password?
 Register account
View 2117|Reply 3

[不等式] 转:三角函数数学归纳法有关的不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-27 20:59 |Read mode
\[求证:\abs{\cos{x}}+\abs{\cos{(2x)}}+\abs{\cos{(4x)}}+\cdots +\abs{\cos{(2^nx)}}\ge \frac{n}{2}.\]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-5-27 21:55
Last edited by hbghlyj 2025-4-6 00:45证明 $\sum_{j=0}^n\left|\cos 2^j x\right| \geq \frac{n}{2}$ ,
证明(2016.05.27 严文兰数学工作室)
记 $f_n(x)=\sum_{j=0}^n |\cos 2^j x|$,由诱导公式知只要考虑 $0 \leq x \leq \frac{\pi}{2}$ 的情况即可
(1)当 $n=0, ~ 1$ 时,易证不等式成立
(2)假设对 $n=k-1, ~ k$ ,不等式成立,那么对 $n=k+1$ ,
若 $0 \leq x \leq \frac{\pi}{3}$ ,则 $f_{k+1}(x)=\cos x+f_k(2 x) \geq \frac{1}{2}+f_k(2 x) \geq \frac{1}{2}+\frac{k}{2} \geq \frac{k+1}{2}$ ,
若 $\frac{\pi}{3}<x \leq \frac{\pi}{2}$ ,则\[f_{k+1}(x)=\cos x-\cos 2 x+f_{k-1}(4 x)=\cos x+1-2 \cos ^2 x+f_{k-1}(4 x)=1+\cos x(1-2 \cos x)+f_{k-1}(4 x) \geq 1+\frac{k-1}{2}=\frac{k+1}{2}
\]
所以 $f_{k+1} \geq \frac{k+1}{2}$,不等式也成立,由数学归纳法,得证,

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-5-27 22:26
呃,旧论坛你发过哒 kkkkuingggg.haotui.com/thread-954-1-4.html

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-5-28 09:23
Last edited by realnumber 2016-5-28 09:58就是,怎么会感觉有些熟悉感,昨天去翻了下旧论坛,没找到.
又本题把楼上的数学归纳法改编下,还可以这样写,
先证明$\abs{\cos{x}}\ge 0.5\Leftrightarrow \abs{\cos{(2x)}}\le 0.5$,也即$\abs{\cos{x}}\le 0.5\Leftrightarrow \abs{\cos{(2x)}}\ge 0.5$
又$\abs{\cos{x}}\le 0.5$时,$\abs{\cos{x}}+ \abs{\cos{(2x)}}\ge 1$ (hnsredfox_007和严文兰老师都提到过的).
接下来利用以上结论证明本题
1.当$\abs{\cos{x}}\ge 0.5$时,有$\abs{\cos{2x}}\le 0.5,\abs{\cos{(2^3x)}}\le 0.5,\cdots $
$\abs{\cos{x}}+(\abs{\cos{2x}}+\abs{\cos{4x}})+(\abs{\cos{(2^3x)}}+\abs{\cos{(2^4x)}})+\cdots \ge 0.5+$[$\frac{n}{2}$]$\ge \frac{n}{2}$
2.当$\abs{\cos{x}}\le 0.5$时
$(\abs{\cos{x}}+\abs{\cos{2x}})+(\abs{\cos{4x}}+\abs{\cos{(2^3x)}})+\cdots \ge $[$\frac{n+1}{2}$]$\ge \frac{n}{2}$

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit