Forgot password?
 Register account
View 2406|Reply 12

[数列] 高三数列

[Copy link]

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

wzyl1860 Posted 2016-5-30 13:46 |Read mode
11.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-30 23:16
真难,搞了我一个多小时……

首先记 $r_n=a_n^2+b_n^2$,递推式即
\begin{align*}
a_{n+1}&=2+\frac{3a_n}{r_n}, \\
b_{n+1}&=-\frac{3b_n}{r_n},
\end{align*}
平方相加得
\[r_{n+1}=4+\frac{12a_n}{r_n}+\frac9{r_n},\quad(*)\]
将第一条递推关系写成
\[r_{n+1}\cdot \frac{12a_{n+1}}{r_{n+1}}=24+3\cdot \frac{12a_n}{r_n},\]
将式 (*) 代入得
\[r_{n+1}\left( r_{n+2}-4-\frac9{r_{n+1}} \right)=24+3\left( r_{n+1}-4-\frac9{r_n} \right),\]
去分母整理为
\[r_nr_{n+1}r_{n+2}=7r_nr_{n+1}+21r_n-27,\]
再令 $r_n=p_{n+1}/p_n$,且 $p_1=1$,代入后即
\[p_{n+3}=7p_{n+2}+21p_{n+1}-27p_n,\]
(终于化出了熟悉的东西!)经计算知 $r_1=5$, $r_2=41/5$,即 $p_2=5$, $p_3=41$,而特征方程刚好可以分解
\[x^3=7x^2+21x-27\iff (x-1)(x-9)(x+3)=0,\]
最终可解出
\[p_n=\frac{1+9^{n-1}}2\riff r_n=\frac{1+9^n}{1+9^{n-1}},\]
代回式 (*) 即可解出
\[a_n=\frac{3\cdot 9^{n-1}-1}{9^{n-1}+1}.\]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-30 23:37
kk威武~~~

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

 Author| wzyl1860 Posted 2016-5-31 09:17
k版威武,不过这作为高考模拟有点夸张吧!

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2016-5-31 19:43
回复 1# wzyl1860


有个简单点的办法,不过不容易想到

\[a_{n+1}+ib_{n+1}=2+\frac{3(a_n-ib_n)}{(a_n-ib_n)(a_n+ib_n)}=2+\frac{3}{a_n+ib_n}\]
令$c_n=a_n+ib_n$,就有
\[c_n=-\frac{3(i+(-\frac{1}{3})^n)}{(-\frac{1}{3})^n-i}\]
然后
\[a_n=Re(c_n), b_n=Im(c_n)\]

Rate

Number of participants 1威望 +1 Collapse Reason
kuing + 1 涨姿势

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-31 21:05
回复 5# 战巡

牛比,涨姿势了

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-31 21:49
回复 5# 战巡


    鼓掌~~~

1

Threads

10

Posts

1025

Credits

Credits
1025

Show all posts

nkzxwdy Posted 2016-5-31 23:09
,犀利,瞬秒了

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2016-6-1 10:11
k版的解法是“天外飞仙”,战神的解法是“神来之笔”。佩服!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-6-1 11:05
表示都一时半会都看不懂

0

Threads

1

Posts

5

Credits

Credits
5

Show all posts

chenjinjay Posted 2016-6-3 11:50
$表情=\赞爆!!!$

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2016-6-5 18:14
QQ图片20160605181058.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-6-5 18:27
回复 12# Tesla35

谢谢提供585果然是数列党

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit