Forgot password?
 Register account
View 1696|Reply 2

[数列] 数列($S_n=n^2+2a|n-2016|$ 求参数范围)

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2016-5-30 21:51 |Read mode
请各位指教,先谢谢了
SH8YJ]162CJY)REC}4B(Q}F.png

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-30 22:59
令n=1,$a_1\le a_2$即$2S_1\le S_2$.
解得$a\le \frac{1}{2016}$.
当$n\ge 2$时,$a_n\le a_{n+1}$,即$S_n-S_{n-1}\le S_{n+1}-S_n$.
得到$a(\abs{2n-4032}-\abs{n-2015}-\abs{n-2017})\le 1$.
因为$\abs{n-2015}+\abs{n-2017}\ge \abs{2n-4032}$,所以上式恒成立.
因此$a\le \frac{1}{2016}$.

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2016-5-31 10:06
回复 2# realnumber


    明白了,多谢噢

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit