Forgot password?
 Register account
View 2251|Reply 0

[不等式] 来自某教师群的一道三元不等式陈题改编

[Copy link]

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2016-6-1 00:45 |Read mode
广东汕头达濠华侨中学李京会(39584****)  23:45:42
QQ截图20160601004416.jpg
这道题显然改编自下面这道陈题(2003国家队培训题)

QQ截图20160601003527.png

而其实又弱于这道陈题,根据陈题的结果,我们有如下不等式成立
\[\sum\frac1{a+b}\geqslant \frac52\cdot\frac1{\sqrt{ab+bc+ca}},\]
令 $a=x^2$, $b=y^2$, $c=z^2$ 得
\[\sum\frac1{x^2+y^2}\geqslant \frac52\cdot\frac1{\sqrt{x^2y^2+y^2z^2+z^2x^2}}
\geqslant \frac52\cdot\frac1{xy+yz+zx},\]
即得证。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:43 GMT+8

Powered by Discuz!

Processed in 0.034745 second(s), 24 queries

× Quick Reply To Top Edit