Forgot password
 Register account
View 1751|Reply 5

[数列] 一道相关单调性数列题

[Copy link]
数海一滴水 posted 2016-6-1 18:45 |Read mode
20160601.png

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2016-6-1 20:00
由$a_2>a_1$,即$2a+\frac{2}{a}-3>a$.解得$0<a<0.5或a>2$.
1.当a>2时,可以用数学归纳法证明$a_n>2$
此时$a_{n+1}-a_n=a_n+\frac{2}{a_n}-3>2+\frac{2}{2}-3=0$,因为$y=x+\frac{2}{x}-3在x>2$时为增函数.
2.当$0<a<0.5$时,$a_2$开始同1.
original poster 数海一滴水 posted 2016-6-1 20:16
回复 2# realnumber
2a+2/a-3>a,解出来好像不是0<a<0.5或a>2
original poster 数海一滴水 posted 2016-6-1 20:29
排除法,取a=0.75,还真的是不满足。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-6-1 21:24
回复 2# realnumber

解 $a_3>a_2$ 才是得出 $0<a<1/2\lor a>2$

1

Threads

10

Posts

0

Reputation

Show all posts

nkzxwdy posted 2016-6-1 21:34
按2楼思路提示:显然 a < 0不合题意,由$a_2 > a_1$ ,得0 < a < 1或 a >2,

同理,再做一步,由$a_3 > a_2$, 得$0 < a < \frac {1}{2}$  或 a > 2,

后面的跟$a_3 > a_2$的算法一样,结果均为$0 < a < \frac {1}{2}$  或 a > 2,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:36 GMT+8

Powered by Discuz!

Processed in 0.018097 seconds, 25 queries