|
Last edited by realnumber 2016-6-2 16:47(1)由已知条件,又$S_n-S_{n-1}=a_n,n\ge 2$.
\[S_n=4S_{n-1}-S_{n-2}+2S_{n-3}\]
此式说明$n\ge 4$时,$S_n$与$S_{n-2}$同为奇数或同为偶数.如此,进一步计算$S_1,S_2,S_3$
可得$S_2,S_4,\cdots,S_{2016}$都为奇数,$S_1,S_3,S_5,S_7,\cdots ,S_{2017}$都为偶数.
所以$a_{2017}=S_{2017}-S_{2016}$为奇数.
同事胡老师的办法:$a_n-a_{n-1}=2(a_{n-1}+a_{n-2})$
\[a_{2017}=(a_{2017}-a_{2016})+\cdots +(a_3-a_2)+a_2\]
\[a_{2017}=2(a_{2016}+a_{2015})+\cdots +2(a_2+a_1)+a_2\]
即$a_{2017}$与$a_2$同为奇数或偶数,由已知$a_2=7$,所以$a_{2017}$为奇数. |
|