Forgot password?
 Register account
View 3016|Reply 15

[数列] 请教一道数列求和题

[Copy link]

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2013-10-11 16:47 |Read mode
$\displaystyle a_n=\frac1{3^{2^{n-1}}-1}+\frac1{3^{2^{n-1}}+1}$,求前 $n$ 项的和 $\displaystyle S_n=\sum_{i=1}^na_i$。

谢谢!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 16:51
我看原题没要求和吧?

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 16:51
谢谢kuing帮忙编写代码!!
请诸位大侠帮我看看怎么做呀。
谢谢!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 16:53
回复 2# kuing

要求了,你可别这么说,不然大家就不做了。
原题通过an的递推式求出an,然后构造出数列bn,求bn的前n项的和,就是如题。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 17:03
回复 4# 史嘉

那我无能为力了

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-10-11 17:12
建议把原题附上吧

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 17:12
回复 2# kuing

百度搜的原题:zhidao.baidu.com/question/264406671.html

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 17:16
回复 6# Tesla35


    我这么写(着急,就不编代码了,辛苦大家!):
已知a1=2,点(an,an+1)在函数F(x)=x^2+2x的图像上,其中n=1,2,3...
(1)证明数列{lg(1+an)}是等比数列;
(2)设Tn=(1+a1)(1+a2)...(1+an),求Tn及数列{an}的通:
(3)记bn=1/an+1/an+2,求数列{bn}的前项和sn,并证明sn+2/3Tn-1=1

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 17:17
回复 7# 史嘉

下标、分式等各种不清晰的表达,这样输入的题目没什么可信度,在找到准确的清楚的原题前继续无能为力……
我指的是百度里的链接

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 17:21
找到准确版本了:
pep.com.cn/gzsxb/xszx/gkzl/zthb/201010/t20101011_925741.htm
题源是 2006 山东卷理科压轴

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 17:24
好!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 17:25
噢,原来可以裂项


略去了原题条件果然更难发现这一点……

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 17:32
回复 12# kuing


    老K,老帅了。
这个论坛不悠闲!!!!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-11 17:38
通过$a_n$找到一阶递推式也不易呀。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-10-11 17:42
回复 13# 史嘉

帅什么,我只是将链接里的图复制过来而已,方便看
我自己可没想到能裂项

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-6-15 13:21
回复 10# kuing
$\displaystyle a_n=\frac1{3^{2^{n-1}}-1}+\frac{1}{3^{2^{n-1}}\color{red}{+}1}$,求前 $n$ 项的和 $\displaystyle S_n=\sum_{i=1}^na_i$ ...
史嘉 发表于 2013-10-11 16:47
回复 1# 史嘉

2015年佛山市二模数学(理科)

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit