Forgot password?
 Register account
View 1737|Reply 5

$|\bm a|=1,|\bm b|=2,|\bm a\cdot\bm e|+|\bm b\cdot\bm e|\le\sqrt6$

[Copy link]

2

Threads

17

Posts

133

Credits

Credits
133

Show all posts

阿鲁 Posted 2016-6-9 19:16 |Read mode
QQ图片20160609191525.jpg

听说是高考题

QQ截图20160609191757.png

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-6-9 22:03
回复 1# 阿鲁


    也是哦,没说几维.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-6-10 10:03
Last edited by isee 2016-6-10 11:262016年浙江理科高考题

那图片上的方向亦不错:$$\abs{(\vv a +\vv b)\vv e}=\abs{\vv a \vv e+\vv b \vv e}\leqslant \abs{\vv a \vv e}+\abs{\vv b \vv e}\leqslant \sqrt 6$$

然后,两边平方:$$\abs{(\vv a +\vv b)\vv e}^2 \leqslant 6$$

坏了,好像算不下去了。。。。

经 realnumber 提示:“上式对任意的$\vv e$均成立,即得左边最大值小于等于$\sqrt 6$",这样”丢掉“单位向量,则:

$$\abs{(\vv a +\vv b)\vv e}^2 \leqslant \abs{(\vv a+\vv b)}^2\abs {\vv e}^2 \leqslant 6$$

即:$$(\vv a+\vv b)^2 \leqslant 6 \Rightarrow \vv a \vv b \leqslant \frac 12$$


结果没问题了,看下取"="条件:需要$\vv a \vv e$ 与 $\vv b \vv e$同号,$<\vv a,\vv b>=\arccos \frac 14$.
嗯,平面内画图成立。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2016-6-11 23:05
复习向量有分配律
\[e(a+b)=ea+eb\le \sqrt6\riff e^2(a+b)^2\le6\riff2ab\le1\]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2016-6-12 13:29
Last edited by 力工 2016-6-12 15:05回复 1# 阿鲁


    你的ID泄露了你的秘密。哈哈,扎克小号真多。那个x可算的,应该是它是\[|tanx|=\frac{\sqrt{15}}{3}\]

1

Threads

15

Posts

83

Credits

Credits
83

Show all posts

f(x) Posted 2016-6-16 23:12
由$\vv{e}$的任意性,令$\vv{e}=\dfrac{\vv{a}+\vv{b}}{|\vv{a}+\vv{b}|}$即得。

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit