Forgot password?
 Register account
View 2115|Reply 5

[几何] 转一个:关于向量的模与数量积

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-6-16 07:21 |Read mode
QQ图片20160616071708---1.jpg

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-16 13:13
\[\vv{a}·\vv{b}=\frac{(\vv{a}+\vv{b})^2-\vv{a}^2-\vv{b}^2}{2}\ge \frac{0-3^2-3^2}{2}\]
即在$\vv{a}=-\vv{b}$,且$\abs{\vv{a}}=\abs{\vv{b}}=3$时,取到最小.
在$\vv{a}=\vv{b}$,且$\abs{\vv{a}}=\abs{\vv{b}}=1.5$时,取到最大.

1

Threads

15

Posts

83

Credits

Credits
83

Show all posts

f(x) Posted 2016-6-16 23:02
回复 2# realnumber
$\vv{a}+\vv{b}=\vv{0}$,这与$|\vv{a}+\vv{b}|\geqslant1$矛盾。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2016-6-17 14:37
回复 3# f(x)


    恩,确实大意了,那就这样$\abs{\vv{a}+\vv{b}}=1,\abs{\vv{a}}=\abs{\vv{b}}=3$时,最小,可以画个三角形,三边对应着向量加法.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-6-17 15:42
完整写好它吧
\begin{align*}
\bm a\cdot\bm b&=\frac{(\bm a+\bm b)^2-\bm a^2-\bm b^2}2
\ge\frac{1^2-3^2-3^2}2=-\frac{17}2,\\
\bm a\cdot\bm b&=\frac{(\bm a+\bm b)^2-(\bm a-\bm b)^2}4
\le\frac94,
\end{align*}
存在 $\abs{\bm a}=\abs{\bm b}=3\land\abs{\bm a+\bm b}=1$,也存在 $\bm a=\bm b\land\abs{\bm a+\bm b}=3$,所以两者等号都能取到。

2

Threads

17

Posts

133

Credits

Credits
133

Show all posts

阿鲁 Posted 2016-7-21 02:02
回复 5# kuing

好无聊,灌个水:$\abs{\bm b}$ 比 $\abs{\vv b}$ 好看太多了

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit