Forgot password?
 Register account
View 2012|Reply 5

[几何] 2016年浙江理数14题

[Copy link]

16

Threads

11

Posts

148

Credits

Credits
148

Show all posts

word3000 Posted 2016-6-17 08:48 |Read mode
14. 如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是     . 1.jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2016-6-17 13:46
回复 1# word3000
forum.php?mod=viewthread&tid=4088&extra=page=1&page=3
这个帖有讨论,硬算。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-6-17 15:15
相当于在 $AC$ 上取点 $D$ 然后折起 $ABD$ 到 $PBD$,显然最大时必然 $PBD \perp ABC$,
设 $\angle ABD=\theta$,则垂直时的高(即 $P$ 到 $BD$ 的距离)为 $2\sin\theta$,由正弦定理得 $BD=1/\sin(30\du+\theta)$,
所以底 $BCD$ 的面积为
\[\S{BCD}=\frac12BC\cdot BD\sin(120\du-\theta)=\frac{\sin(60\du+\theta)}{\sin(30\du+\theta)},\]
那么
\[V=\frac{2\sin\theta\sin(60\du+\theta)}{3\sin(30\du+\theta)}
=\frac{\cos60\du-\cos(60\du+2\theta)}{3\sin(30\du+\theta)}
=\frac{\frac12-1+2\sin^2(30\du+\theta)}{3\sin(30\du+\theta)}
=\frac{2\sin(30\du+\theta)}3-\frac1{6\sin(30\du+\theta)},\]
所以当 $\theta=60\du$ 时最大体积为 $1/2$。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-6-17 17:33
改了一下,刚才计算底面积太逗了……

16

Threads

11

Posts

148

Credits

Credits
148

Show all posts

 Author| word3000 Posted 2016-6-17 19:16
谢谢大家,我感觉这个论坛很好的。都很热心、积极。希望本论坛人气越来越旺。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-6-17 20:25
未命名.PNG

m=n时取等号

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit