Forgot password
 Register account
View 1696|Reply 2

[数列] 数列求和

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2016-6-19 13:43 |Read mode
请教第(2)问,谢谢
QQ图片20160619134307.png

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2016-6-19 14:56
回复 1# lrh2006


这个不难吧
首先易证
\[a_n=\frac{2^{n+1}}{n^2+1}\]
\[c_n=\frac{1}{n(n+1)a_{n+1}}=\frac{1}{2^{n+2}}(1+\frac{2}{n}-\frac{1}{n+1})\]
\[S_n=\sum_{k=1}^nc_k=\sum_{k=1}^n\frac{1}{2^{k+2}}+\sum_{k=1}^n(\frac{1}{2^{k+1}k}-\frac{1}{2^{k+2}(k+1)})=\frac{1}{4}-\frac{1}{2^{n+2}}+\frac{1}{4}-\frac{1}{2^{n+2}(n+1)}\]
\[=\frac{1}{2}-\frac{1}{2^{n+2}}-\frac{1}{2^{n+2}(n+1)}\]

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2016-6-19 18:20
回复 2# 战巡


    嗯嗯,明白了,主要是裂项不会,谢谢咯。这种裂项有方法吗?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:51 GMT+8

Powered by Discuz!

Processed in 0.014712 seconds, 25 queries