Forgot password
 Register account
original poster: kuing

[函数] 网友问的一道合情推理三角恒等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2019-7-23 00:11
回复 20# abababa

这个解法有点意思
PS、最后那行下限 k=1 起吧。

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2019-7-23 18:34
回复 21# kuing

是的,应该是从$1$开始,不过网友发过来的版本是$0$开始,应该是他打错了。
另外他最开始那个“由 Euler”我也没明白,印象中是魏尔斯特拉斯那个无穷乘积分解得出了$\frac{\sin(x\pi)}{x\pi}=\prod_{n=1}^{\infty}(1-\frac{x^2}{n^2})$,然后(取对数)求导两次得出的那个式子。

3219

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-6-5 15:08
$$\sum_{k=0}^{N-1} \frac{1}{\sin ^{2} \frac{(2 k+1) \pi}{2 N}}=N^{2}$$
$$\sum_{k=1}^{N} \cot ^{2} \frac{k \pi}{2 N+1}=\frac{N(2 N-1)}{3}$$
$$\sum_{k=1}^{N} \frac{1}{\sin ^{2} \frac{k \pi}{2 N+1}}=\frac{2 N(N+1)}{3}$$
homepage.univie.ac.at/josef.hofbauer/02amm.pdf#page=3
备份一下,以防链接挂了
$type A Simple Proof of ζ(2)=frac{π^2}6 and Related Identities.pdf (85.56 KB, Downloads: 19)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:10 GMT+8

Powered by Discuz!

Processed in 0.011724 seconds, 23 queries