|
Last edited by hbghlyj at 2025-4-2 01:49:36(2011-重庆理 7)已知 $a>0, b>0, a+b=2$ ,则 $\frac{1}{a}+\frac{4}{b}$ 的最小值是
\[
\begin{aligned}
& 2(a+b)=2 a+b+b \geq 3 \sqrt[3]{2 a b^2} \Rightarrow \frac{\left[\frac{2(a+b)}{3}\right]^3}{2}=\frac{4(a+b)^3}{27} \geq a b^2 \\
& \Rightarrow \frac{1}{a b^2} \geq \frac{27}{4(a+b)^3} \\
& \frac{1}{a}+\frac{4}{b}=\frac{1}{a}+\frac{2}{b}+\frac{2}{b} \geq 3 \sqrt[3]{\frac{4}{a b^2}} \geq 3 \sqrt[3]{\frac{27}{(a+b)^3}}=3 \sqrt[3]{\frac{27}{8}}=\frac{9}{2}
\end{aligned}
\]
已知 $a>0, b>0, c>0, a+b+c=3$ ,则 $\frac{1}{a}+\frac{4}{b}+\frac{9}{b}$ 的最小值是 |
|