Forgot password
 Register account
View 2618|Reply 15

[几何] 求助,20题

[Copy link]

2

Threads

4

Posts

0

Reputation

Show all posts

张振华 posted 2016-7-19 08:30 |Read mode
QQ图片20160719075719_1.JPG
QQ图片20160719075719_2.JPG

3

Threads

32

Posts

0

Reputation

Show all posts

三尺水 posted 2016-7-19 08:52
DC等于三倍DA

2

Threads

4

Posts

0

Reputation

Show all posts

original poster 张振华 posted 2016-7-19 10:48
回复 2# 三尺水


    怎么算出来的?

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-19 13:13
第一感补成正方形,由全等及平行四边形,可得K为LC中点。

于是由阴影三角形全等,得AG=2,这样就完成一大半。
sr.png

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-19 13:22
回复 4# isee


    用相似得最后的结果$AM=\dfrac {10}{\sqrt {34}}$,不用相似,还在想……

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-19 13:31
第一感补成正方形,由全等及平行四边形,可得K为LC中点。

于是由阴影三角形全等,得AG=2,这样就完成一大 ...
isee 发表于 2016-7-19 13:13
没有好招,求距离,那优先面积,$\triangle BFG$边$BG$上的高为$\dfrac {15}{\sqrt {34}}$,

然后$3:2=S_{\triangle BFG}:S_{\triangle BAG}=\dfrac {15}{\sqrt {34}}:AM$,化简……

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-19 13:48
乌贼快来。。。。

3

Threads

32

Posts

0

Reputation

Show all posts

三尺水 posted 2016-7-19 18:55
回复 3# 张振华


    方法很流氓,画图量粗来的(*≧m≦*)
这问题基础得很,最直观方法坐标系设点计算,最后解方程

2

Threads

4

Posts

0

Reputation

Show all posts

original poster 张振华 posted 2016-7-19 20:21
回复 8# 三尺水

感谢楼上的帮助

2

Threads

4

Posts

0

Reputation

Show all posts

original poster 张振华 posted 2016-7-19 20:31
Last edited by 张振华 2016-7-19 21:17 001tzsBDzy73nD5l4x016&690.jpg 001tzsBDzy73nD5l4x016&690.jpg 001tzsBDzy73nD5l4x016&690.jpg

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-19 21:45
这么一看,原题在八年级还是有难度的,毕竟八年级一般不学相似。。

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2016-7-19 23:26
Last edited by 乌贼 2016-7-20 22:27 2001.png
   如图,补成正方形$ BCNM $,连接$ ME $,由$ E,G,C $三点共线有\[\angle HEG+\angle EGB=90\du =\angle BAC+\angle CAB=\angle ABG+\angle GBC+\angle GCB+\angle ACG=\angle EGB+\angle ACE+\angle AME\riff \angle HEC=\angle ACE+\angle AME\]所以$ M,E,H $三点共线,有\[\tan\angle BMH=\tan\angle FBG=\dfrac{3}{FB}=\dfrac{HB}{BM}\riff \dfrac{3}{\frac12MB}=\dfrac{MB-4}{BM}\]得\[MB=10\]下略

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-7-20 09:32
未命名.PNG

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-20 13:58
如图,补成正方形$ BCNM $,连接$ ME $,由$ E,G,C $三点共线有\[\angle HEG+\angle EGB=90\du =\ang ...
乌贼 发表于 2016-7-19 23:26
书写这思路实际也是相似。



sr2.png


不过,这个对称很赞。(关于AB对称下),延长BD交NC于L,则BH=CL=2GF=6.

绕过相似……

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-20 13:59

    建系会不会更简明些?

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-7-20 14:05
如图,补成正方形$ BCNM $,连接$ ME $,由$ E,G,C $三点共线有\[\angle HEG+\angle EGB=90\du =\ang ...
乌贼 发表于 2016-7-19 23:26

    另外 tan 代码是 \tan 其它三角符号类似

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:08 GMT+8

Powered by Discuz!

Processed in 0.013304 seconds, 27 queries