|
Author |
郝酒
Posted 2016-9-9 20:55
这有一个数学归纳法的解法,挺粗暴的:)artofproblemsolving.com/community/u113828h1289401p6815724
数归证这个加强不等式:
$$\begin{align*}
\sum_{k=1}^{n} & \frac{\left(b_{1}+b_{2}+\cdots+b_{k}\right)b_{k}}{a_{1}+a_{2}+\cdots+a_{k}}\leq\frac{3}{2}\frac{b_{1}^{2}}{a_{1}}+2\sum_{k=2}^{n}\frac{b_{k}^{2}}{a_{k}}.
\end{align*}$$
$n=1$时显然,假设对$n-1$也成立,则有
$$\begin{align*}\frac{\left(b_{1}+b_{2}\right)^{2}}{a_{1}+a_{2}} & +\sum_{k=3}^{n}\frac{\left(b_{1}+\cdots+b_{k}\right)b_{k}}{a_{1}+\cdots+a_{k}}\leq\frac{3}{2}\frac{\left(b_{1}+b_{2}\right)^{2}}{a_{1}+a_{2}}+2\sum_{k=3}^{n}\frac{b_{k}^{2}}{a_{k}}
\end{align*}$$
$$\begin{align*}
\frac{b_{1}^{2}}{a_{1}}+\frac{\left(b_{1}+b_{2}\right)b_{2}}{a_{1}+a_{2}}+\frac{1}{2}\frac{\left(b_{1}+b_{2}\right)^{2}}{a_{1}+a_{2}} & \leq\frac{3}{2}\frac{b_{1}^{2}}{a_{1}}+2\frac{b_{2}^{2}}{a_{2}}\\
\frac{b_{1}^{2}+4b_{1}b_{2}+3b_{2}^{2}}{a_{1}+a_{2}} & \leq\frac{b_{1}^{2}}{a_{1}}+4\frac{b_{2}^{2}}{a_{2}}\\
b_{1}^{2}+4b_{1}b_{2}+3b_{2}^{2} & \leq b_{1}^{2}+\frac{a_{2}}{a_{1}}b_{1}^{2}+4\frac{a_{1}}{a_{2}}b_{2}^{2}+4b_{2}^{2}\\
4b_{1}b_{2} & \leq\frac{a_{2}}{a_{1}}b_{1}^{2}+4\frac{a_{1}}{a_{2}}b_{2}^{2}+b_{2}^{2}
\end{align*}$$
由
$$\begin{align*}
\frac{a_{2}}{a_{1}}b_{1}^{2}+4\frac{a_{1}}{a_{2}}b_{2}^{2} & \geq2\sqrt{\frac{a_{2}}{a_{1}}b_{1}^{2}\cdot4\frac{a_{1}}{a_{2}}b_{2}^{2}}\\
& =4b_{1}b_{2}
\end{align*}$$
即得. |
|