Forgot password?
 Register account
View 2532|Reply 18

[不等式] 求证:$x^8+x^2+1>x^5+x$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-8-17 15:22 |Read mode
求证:$x^8+x^2+1>x^5+x$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-8-17 15:35
$x\le0$ 时 $LHS>0\ge RHS$;
$x\in(0,1)$ 时 $x^2>x^5$, $1>x$;
$x\ge1$ 时 $x^8\ge x^5$, $x^2\ge x$。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-8-17 16:31
$0.5x^8+0.5x^2\ge x^5 ,0.5x^2+0.5\ge x$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 19:42
回复 3# realnumber


    然后?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 19:42
$x\le0$ 时 $LHS>0\ge RHS$;
$x\in(0,1)$ 时 $x^2>x^5$, $1>x$;
$x\ge1$ 时 $x^8\ge x^5$, $x^2\ge x$。 ...
kuing 发表于 2016-8-17 15:35
虽然看不懂,但被你秒。。。。。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-8-17 20:22
我擦,这都看不懂?那都要然后?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2016-8-17 21:00
Last edited by 青青子衿 2016-8-17 21:09回复 4# isee
$0.5x^8+0.5x^2\ge x^5 ,0.5x^2+0.5\ge x$
realnumber 发表于 2016-8-17 16:31
这两个由AM-GM不等式得到的两个同向不等式:
\(\frac{x^8+x^2}{2}\ge x^5\)
\(\frac{x^2+1}{2}\ge x\)
相加不就好了吗?
\(\frac{x^8}{2}+x^2+\frac{1}{2}\ge x^5+x\)
再由\(\frac{x^8}{2}\)恒正知:
\(\frac{x^8}{2}+x^2+\frac{1}{2}+\frac{x^8}{2}+\frac{1}{2}>x^5+x\)

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:01
我擦,这都看不懂?那都要然后?
kuing 发表于 2016-8-17 20:22
相加?x^2的系数不对啊

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:02
$x\le0$ 时 $LHS>0\ge RHS$;
$x\in(0,1)$ 时 $x^2>x^5$, $1>x$;
$x\ge1$ 时 $x^8\ge x^5$, $x^2\ge x$。 ...
kuing 发表于 2016-8-17 15:35
流氓题,这TM差得也太多了。。。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:05
LHS  左边式子?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:10
$0.5x^8+0.5x^2\ge x^5 ,0.5x^2+0.5\ge x$
realnumber 发表于 2016-8-17 16:31

    $0.5x^8+x^2+0.5>x^5+x$

    流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题,怎么感觉被欺骗了

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2016-8-17 21:11
相加?x^2的系数不对啊
isee 发表于 2016-8-17 21:01
凑两个恒大于0的数就是原不等式的左边了呀!
回复  isee
这两个由AM-GM不等式得到的两个同向不等式:
\(\frac{x^8+x^2}{2}\ge x^5\)
\(\frac{x^2+1}{2}\ge x\)
相加不就好了吗?
\(\frac{x^8}{2}+x^2+\frac{1}{2}\ge x^5+x\)
再由\(\frac{x^8}{2}\)恒正知:
\(\frac{x^8}{2}+x^2+\frac{1}{2}+\frac{x^8}{2}+\frac{1}{2}>x^5+x\)
青青子衿 发表于 2016-8-17 21:00

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2016-8-17 21:15
回复 11# isee
$0.5x^8+x^2+0.5>x^5+x$

流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题流氓题,怎 ...
isee 发表于 2016-8-17 21:10
这不等式还可以取等号
当且仅当x=1

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2016-8-17 21:16
回复 10# isee
LHS  左边式子?
isee 发表于 2016-8-17 21:05
left-hand side 左边

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:24


回复  isee

left-hand side 左边
青青子衿 发表于 2016-8-17 21:16

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:26
回复  isee

这不等式还可以取等号
当且仅当x=1
青青子衿 发表于 2016-8-17 21:15

    多谢!明白了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-17 21:27
能配方么?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-8-17 23:37
回复 17# isee

有了均值法还写不出配方?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-8-25 12:53
回复  isee

有了均值法还写不出配方?
色k 发表于 2016-8-17 23:37
均值用得太强。

这样也行。2/3是比零大很多。。。。

$$x^8+x^2+1-x^5-x
\\=x^8-x^5+x^2-x+1
\\=\left(x^4-\frac x2\right)^2+\left(\frac{\sqrt 3x}{2}-\frac 1{\sqrt 3}\right)^2+\frac 23$$

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit