Forgot password
 Register account
View 2689|Reply 3

[函数] 一类与声音有关的三角函数

[Copy link]
青青子衿 posted 2013-10-13 14:12 |Read mode
1.jpg
2.jpg
3.jpg
如何求其单调区间、周期、值域?
拜托kuing整理了,谢谢!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-13 14:19
Last edited by Tesla35 2013-10-13 14:40没有实用意义吧,这是傅里叶级数的前几项嘛

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-13 20:33
求导不就好了,请动手
original poster 青青子衿 posted 2013-10-26 10:46
$f(x)=\sin x+\frac{1}{2}\sin2x+\frac{1}{3}\sin3x$
$f'(x)=\cos x+\cos2x+\cos3x=\cos x+2\cos^2x-1+4\cos^3x-3\cos x=2\cos^2x(2\cos x+1)-(2\cos x+1)=(2\cos^2x-1)(2\cos x+1)$
$f(x)=\sin x+\frac{1}{2}\sin2x+……+\frac{1}{n}\sin nx$
$f'(x)=\cos x+\cos2x+……+\cos nx=\frac{1}{2\sin\frac{x}{2}}(2\cos x\sin\frac{x}{2}+2\cos2x\sin\frac{x}{2}+……+2\cos nx\sin\frac{x}{2})=\frac{1}{2\sin\frac{x}{2}}[(\sin\frac{x}{2}-\sin\frac{3x}{2})+(\sin\frac{3x}{2}-\sin\frac{5x}{2})+……+(\sin\frac{2n-1}{2}x-\sin\frac{2n+1}{2}x)]=\frac{1}{2\sin\frac{x}{2}}(\sin\frac{x}{2}-\sin\frac{2n+1}{2}x)=\frac{\sin\frac{nx}{2}\cos\frac{n+1}{2}x}{sin\frac{x}{2}}$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:04 GMT+8

Powered by Discuz!

Processed in 0.126415 seconds, 26 queries