Forgot password
 Register account
View 1544|Reply 7

$a\sqrt{1-b^2}+b\sqrt {1-a^2}=1$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-8-24 13:58 |Read mode
已知:$a\sqrt{1-b^2}+b\sqrt {1-a^2}=1$,求证:$a^2+b^2=1$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2016-8-24 14:04
这绝对是个陈题,再次看到在是某群里。

用最笨的方法也行:移项平方,合并,移项再平方,分解因式即可得到答案。

不过,最近又到的不等式“季节”了,顺着不等方向看了下,亦可:

$$a\sqrt{1-b^2}\leqslant \frac {a^2+1-b^2}2,b\sqrt{1-a^2}\leqslant \frac {b^2+1-a^2}2.$$

两式相加便有

$$a\sqrt{1-b^2}+b\sqrt{1-a^2} \leqslant \frac {a^2+1-b^2}2+\frac {b^2+1-a^2}2=1.$$

而取等"="时,$$a=\sqrt {1-b^2},b=\sqrt {1-a^2}\Rightarrow a^2+b^2=1.$$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-8-24 14:17
不等式的季节?怎么看出来的

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2016-8-24 15:09
不等式的季节?怎么看出来的
kuing 发表于 2016-8-24 14:17

    学生高二上必修5,有不等式;高三也基本过了这一块。

    随口说一下而已啦,不用介意。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-8-24 15:55
回复 4# isee

圆奶乳齿,难怪我不知道

0

Threads

1

Posts

0

Reputation

Show all posts

justidy posted 2016-9-1 15:34
柯西不等式快

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2016-9-11 18:58
回复 6# justidy
三角换元、向量等方法也挺快吧

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-9-11 19:22
回复 7# 其妙

都明知是相通的,谁快谁慢有什么所谓,看谁的写法字数多而已

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 21:01 GMT+8

Powered by Discuz!

Processed in 0.017512 seconds, 22 queries